LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
clarzb.f
Go to the documentation of this file.
1*> \brief \b CLARZB applies a block reflector or its conjugate-transpose to a general matrix.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLARZB + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarzb.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarzb.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarzb.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
22* LDV, T, LDT, C, LDC, WORK, LDWORK )
23*
24* .. Scalar Arguments ..
25* CHARACTER DIRECT, SIDE, STOREV, TRANS
26* INTEGER K, L, LDC, LDT, LDV, LDWORK, M, N
27* ..
28* .. Array Arguments ..
29* COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ),
30* $ WORK( LDWORK, * )
31* ..
32*
33*
34*> \par Purpose:
35* =============
36*>
37*> \verbatim
38*>
39*> CLARZB applies a complex block reflector H or its transpose H**H
40*> to a complex distributed M-by-N C from the left or the right.
41*>
42*> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
43*> \endverbatim
44*
45* Arguments:
46* ==========
47*
48*> \param[in] SIDE
49*> \verbatim
50*> SIDE is CHARACTER*1
51*> = 'L': apply H or H**H from the Left
52*> = 'R': apply H or H**H from the Right
53*> \endverbatim
54*>
55*> \param[in] TRANS
56*> \verbatim
57*> TRANS is CHARACTER*1
58*> = 'N': apply H (No transpose)
59*> = 'C': apply H**H (Conjugate transpose)
60*> \endverbatim
61*>
62*> \param[in] DIRECT
63*> \verbatim
64*> DIRECT is CHARACTER*1
65*> Indicates how H is formed from a product of elementary
66*> reflectors
67*> = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
68*> = 'B': H = H(k) . . . H(2) H(1) (Backward)
69*> \endverbatim
70*>
71*> \param[in] STOREV
72*> \verbatim
73*> STOREV is CHARACTER*1
74*> Indicates how the vectors which define the elementary
75*> reflectors are stored:
76*> = 'C': Columnwise (not supported yet)
77*> = 'R': Rowwise
78*> \endverbatim
79*>
80*> \param[in] M
81*> \verbatim
82*> M is INTEGER
83*> The number of rows of the matrix C.
84*> \endverbatim
85*>
86*> \param[in] N
87*> \verbatim
88*> N is INTEGER
89*> The number of columns of the matrix C.
90*> \endverbatim
91*>
92*> \param[in] K
93*> \verbatim
94*> K is INTEGER
95*> The order of the matrix T (= the number of elementary
96*> reflectors whose product defines the block reflector).
97*> \endverbatim
98*>
99*> \param[in] L
100*> \verbatim
101*> L is INTEGER
102*> The number of columns of the matrix V containing the
103*> meaningful part of the Householder reflectors.
104*> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
105*> \endverbatim
106*>
107*> \param[in] V
108*> \verbatim
109*> V is COMPLEX array, dimension (LDV,NV).
110*> If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
111*> \endverbatim
112*>
113*> \param[in] LDV
114*> \verbatim
115*> LDV is INTEGER
116*> The leading dimension of the array V.
117*> If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
118*> \endverbatim
119*>
120*> \param[in] T
121*> \verbatim
122*> T is COMPLEX array, dimension (LDT,K)
123*> The triangular K-by-K matrix T in the representation of the
124*> block reflector.
125*> \endverbatim
126*>
127*> \param[in] LDT
128*> \verbatim
129*> LDT is INTEGER
130*> The leading dimension of the array T. LDT >= K.
131*> \endverbatim
132*>
133*> \param[in,out] C
134*> \verbatim
135*> C is COMPLEX array, dimension (LDC,N)
136*> On entry, the M-by-N matrix C.
137*> On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
138*> \endverbatim
139*>
140*> \param[in] LDC
141*> \verbatim
142*> LDC is INTEGER
143*> The leading dimension of the array C. LDC >= max(1,M).
144*> \endverbatim
145*>
146*> \param[out] WORK
147*> \verbatim
148*> WORK is COMPLEX array, dimension (LDWORK,K)
149*> \endverbatim
150*>
151*> \param[in] LDWORK
152*> \verbatim
153*> LDWORK is INTEGER
154*> The leading dimension of the array WORK.
155*> If SIDE = 'L', LDWORK >= max(1,N);
156*> if SIDE = 'R', LDWORK >= max(1,M).
157*> \endverbatim
158*
159* Authors:
160* ========
161*
162*> \author Univ. of Tennessee
163*> \author Univ. of California Berkeley
164*> \author Univ. of Colorado Denver
165*> \author NAG Ltd.
166*
167*> \ingroup larzb
168*
169*> \par Contributors:
170* ==================
171*>
172*> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
173*
174*> \par Further Details:
175* =====================
176*>
177*> \verbatim
178*> \endverbatim
179*>
180* =====================================================================
181 SUBROUTINE clarzb( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
182 $ LDV, T, LDT, C, LDC, WORK, LDWORK )
183*
184* -- LAPACK computational routine --
185* -- LAPACK is a software package provided by Univ. of Tennessee, --
186* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
187*
188* .. Scalar Arguments ..
189 CHARACTER DIRECT, SIDE, STOREV, TRANS
190 INTEGER K, L, LDC, LDT, LDV, LDWORK, M, N
191* ..
192* .. Array Arguments ..
193 COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ),
194 $ work( ldwork, * )
195* ..
196*
197* =====================================================================
198*
199* .. Parameters ..
200 COMPLEX ONE
201 parameter( one = ( 1.0e+0, 0.0e+0 ) )
202* ..
203* .. Local Scalars ..
204 CHARACTER TRANST
205 INTEGER I, INFO, J
206* ..
207* .. External Functions ..
208 LOGICAL LSAME
209 EXTERNAL lsame
210* ..
211* .. External Subroutines ..
212 EXTERNAL ccopy, cgemm, clacgv, ctrmm, xerbla
213* ..
214* .. Executable Statements ..
215*
216* Quick return if possible
217*
218 IF( m.LE.0 .OR. n.LE.0 )
219 $ RETURN
220*
221* Check for currently supported options
222*
223 info = 0
224 IF( .NOT.lsame( direct, 'B' ) ) THEN
225 info = -3
226 ELSE IF( .NOT.lsame( storev, 'R' ) ) THEN
227 info = -4
228 END IF
229 IF( info.NE.0 ) THEN
230 CALL xerbla( 'CLARZB', -info )
231 RETURN
232 END IF
233*
234 IF( lsame( trans, 'N' ) ) THEN
235 transt = 'C'
236 ELSE
237 transt = 'N'
238 END IF
239*
240 IF( lsame( side, 'L' ) ) THEN
241*
242* Form H * C or H**H * C
243*
244* W( 1:n, 1:k ) = C( 1:k, 1:n )**H
245*
246 DO 10 j = 1, k
247 CALL ccopy( n, c( j, 1 ), ldc, work( 1, j ), 1 )
248 10 CONTINUE
249*
250* W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
251* C( m-l+1:m, 1:n )**H * V( 1:k, 1:l )**T
252*
253 IF( l.GT.0 )
254 $ CALL cgemm( 'Transpose', 'Conjugate transpose', n, k, l,
255 $ one, c( m-l+1, 1 ), ldc, v, ldv, one, work,
256 $ ldwork )
257*
258* W( 1:n, 1:k ) = W( 1:n, 1:k ) * T**T or W( 1:m, 1:k ) * T
259*
260 CALL ctrmm( 'Right', 'Lower', transt, 'Non-unit', n, k, one, t,
261 $ ldt, work, ldwork )
262*
263* C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )**H
264*
265 DO 30 j = 1, n
266 DO 20 i = 1, k
267 c( i, j ) = c( i, j ) - work( j, i )
268 20 CONTINUE
269 30 CONTINUE
270*
271* C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
272* V( 1:k, 1:l )**H * W( 1:n, 1:k )**H
273*
274 IF( l.GT.0 )
275 $ CALL cgemm( 'Transpose', 'Transpose', l, n, k, -one, v, ldv,
276 $ work, ldwork, one, c( m-l+1, 1 ), ldc )
277*
278 ELSE IF( lsame( side, 'R' ) ) THEN
279*
280* Form C * H or C * H**H
281*
282* W( 1:m, 1:k ) = C( 1:m, 1:k )
283*
284 DO 40 j = 1, k
285 CALL ccopy( m, c( 1, j ), 1, work( 1, j ), 1 )
286 40 CONTINUE
287*
288* W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
289* C( 1:m, n-l+1:n ) * V( 1:k, 1:l )**H
290*
291 IF( l.GT.0 )
292 $ CALL cgemm( 'No transpose', 'Transpose', m, k, l, one,
293 $ c( 1, n-l+1 ), ldc, v, ldv, one, work, ldwork )
294*
295* W( 1:m, 1:k ) = W( 1:m, 1:k ) * conjg( T ) or
296* W( 1:m, 1:k ) * T**H
297*
298 DO 50 j = 1, k
299 CALL clacgv( k-j+1, t( j, j ), 1 )
300 50 CONTINUE
301 CALL ctrmm( 'Right', 'Lower', trans, 'Non-unit', m, k, one, t,
302 $ ldt, work, ldwork )
303 DO 60 j = 1, k
304 CALL clacgv( k-j+1, t( j, j ), 1 )
305 60 CONTINUE
306*
307* C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
308*
309 DO 80 j = 1, k
310 DO 70 i = 1, m
311 c( i, j ) = c( i, j ) - work( i, j )
312 70 CONTINUE
313 80 CONTINUE
314*
315* C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
316* W( 1:m, 1:k ) * conjg( V( 1:k, 1:l ) )
317*
318 DO 90 j = 1, l
319 CALL clacgv( k, v( 1, j ), 1 )
320 90 CONTINUE
321 IF( l.GT.0 )
322 $ CALL cgemm( 'No transpose', 'No transpose', m, l, k, -one,
323 $ work, ldwork, v, ldv, one, c( 1, n-l+1 ), ldc )
324 DO 100 j = 1, l
325 CALL clacgv( k, v( 1, j ), 1 )
326 100 CONTINUE
327*
328 END IF
329*
330 RETURN
331*
332* End of CLARZB
333*
334 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine cgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
CGEMM
Definition cgemm.f:188
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:74
subroutine clarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work, ldwork)
CLARZB applies a block reflector or its conjugate-transpose to a general matrix.
Definition clarzb.f:183
subroutine ctrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
CTRMM
Definition ctrmm.f:177