LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zlaghe()

subroutine zlaghe ( integer n,
integer k,
double precision, dimension( * ) d,
complex*16, dimension( lda, * ) a,
integer lda,
integer, dimension( 4 ) iseed,
complex*16, dimension( * ) work,
integer info )

ZLAGHE

Purpose:
!>
!> ZLAGHE generates a complex hermitian matrix A, by pre- and post-
!> multiplying a real diagonal matrix D with a random unitary matrix:
!> A = U*D*U'. The semi-bandwidth may then be reduced to k by additional
!> unitary transformations.
!> 
Parameters
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]K
!>          K is INTEGER
!>          The number of nonzero subdiagonals within the band of A.
!>          0 <= K <= N-1.
!> 
[in]D
!>          D is DOUBLE PRECISION array, dimension (N)
!>          The diagonal elements of the diagonal matrix D.
!> 
[out]A
!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          The generated n by n hermitian matrix A (the full matrix is
!>          stored).
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= N.
!> 
[in,out]ISEED
!>          ISEED is INTEGER array, dimension (4)
!>          On entry, the seed of the random number generator; the array
!>          elements must be between 0 and 4095, and ISEED(4) must be
!>          odd.
!>          On exit, the seed is updated.
!> 
[out]WORK
!>          WORK is COMPLEX*16 array, dimension (2*N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 101 of file zlaghe.f.

102*
103* -- LAPACK auxiliary routine --
104* -- LAPACK is a software package provided by Univ. of Tennessee, --
105* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
106*
107* .. Scalar Arguments ..
108 INTEGER INFO, K, LDA, N
109* ..
110* .. Array Arguments ..
111 INTEGER ISEED( 4 )
112 DOUBLE PRECISION D( * )
113 COMPLEX*16 A( LDA, * ), WORK( * )
114* ..
115*
116* =====================================================================
117*
118* .. Parameters ..
119 COMPLEX*16 ZERO, ONE, HALF
120 parameter( zero = ( 0.0d+0, 0.0d+0 ),
121 $ one = ( 1.0d+0, 0.0d+0 ),
122 $ half = ( 0.5d+0, 0.0d+0 ) )
123* ..
124* .. Local Scalars ..
125 INTEGER I, J
126 DOUBLE PRECISION WN
127 COMPLEX*16 ALPHA, TAU, WA, WB
128* ..
129* .. External Subroutines ..
130 EXTERNAL xerbla, zaxpy, zgemv, zgerc, zhemv, zher2,
131 $ zlarnv, zscal
132* ..
133* .. External Functions ..
134 DOUBLE PRECISION DZNRM2
135 COMPLEX*16 ZDOTC
136 EXTERNAL dznrm2, zdotc
137* ..
138* .. Intrinsic Functions ..
139 INTRINSIC abs, dble, dconjg, max
140* ..
141* .. Executable Statements ..
142*
143* Test the input arguments
144*
145 info = 0
146 IF( n.LT.0 ) THEN
147 info = -1
148 ELSE IF( k.LT.0 .OR. k.GT.n-1 ) THEN
149 info = -2
150 ELSE IF( lda.LT.max( 1, n ) ) THEN
151 info = -5
152 END IF
153 IF( info.LT.0 ) THEN
154 CALL xerbla( 'ZLAGHE', -info )
155 RETURN
156 END IF
157*
158* initialize lower triangle of A to diagonal matrix
159*
160 DO 20 j = 1, n
161 DO 10 i = j + 1, n
162 a( i, j ) = zero
163 10 CONTINUE
164 20 CONTINUE
165 DO 30 i = 1, n
166 a( i, i ) = d( i )
167 30 CONTINUE
168*
169* Generate lower triangle of hermitian matrix
170*
171 DO 40 i = n - 1, 1, -1
172*
173* generate random reflection
174*
175 CALL zlarnv( 3, iseed, n-i+1, work )
176 wn = dznrm2( n-i+1, work, 1 )
177 wa = ( wn / abs( work( 1 ) ) )*work( 1 )
178 IF( wn.EQ.zero ) THEN
179 tau = zero
180 ELSE
181 wb = work( 1 ) + wa
182 CALL zscal( n-i, one / wb, work( 2 ), 1 )
183 work( 1 ) = one
184 tau = dble( wb / wa )
185 END IF
186*
187* apply random reflection to A(i:n,i:n) from the left
188* and the right
189*
190* compute y := tau * A * u
191*
192 CALL zhemv( 'Lower', n-i+1, tau, a( i, i ), lda, work, 1, zero,
193 $ work( n+1 ), 1 )
194*
195* compute v := y - 1/2 * tau * ( y, u ) * u
196*
197 alpha = -half*tau*zdotc( n-i+1, work( n+1 ), 1, work, 1 )
198 CALL zaxpy( n-i+1, alpha, work, 1, work( n+1 ), 1 )
199*
200* apply the transformation as a rank-2 update to A(i:n,i:n)
201*
202 CALL zher2( 'Lower', n-i+1, -one, work, 1, work( n+1 ), 1,
203 $ a( i, i ), lda )
204 40 CONTINUE
205*
206* Reduce number of subdiagonals to K
207*
208 DO 60 i = 1, n - 1 - k
209*
210* generate reflection to annihilate A(k+i+1:n,i)
211*
212 wn = dznrm2( n-k-i+1, a( k+i, i ), 1 )
213 wa = ( wn / abs( a( k+i, i ) ) )*a( k+i, i )
214 IF( wn.EQ.zero ) THEN
215 tau = zero
216 ELSE
217 wb = a( k+i, i ) + wa
218 CALL zscal( n-k-i, one / wb, a( k+i+1, i ), 1 )
219 a( k+i, i ) = one
220 tau = dble( wb / wa )
221 END IF
222*
223* apply reflection to A(k+i:n,i+1:k+i-1) from the left
224*
225 CALL zgemv( 'Conjugate transpose', n-k-i+1, k-1, one,
226 $ a( k+i, i+1 ), lda, a( k+i, i ), 1, zero, work, 1 )
227 CALL zgerc( n-k-i+1, k-1, -tau, a( k+i, i ), 1, work, 1,
228 $ a( k+i, i+1 ), lda )
229*
230* apply reflection to A(k+i:n,k+i:n) from the left and the right
231*
232* compute y := tau * A * u
233*
234 CALL zhemv( 'Lower', n-k-i+1, tau, a( k+i, k+i ), lda,
235 $ a( k+i, i ), 1, zero, work, 1 )
236*
237* compute v := y - 1/2 * tau * ( y, u ) * u
238*
239 alpha = -half*tau*zdotc( n-k-i+1, work, 1, a( k+i, i ), 1 )
240 CALL zaxpy( n-k-i+1, alpha, a( k+i, i ), 1, work, 1 )
241*
242* apply hermitian rank-2 update to A(k+i:n,k+i:n)
243*
244 CALL zher2( 'Lower', n-k-i+1, -one, a( k+i, i ), 1, work, 1,
245 $ a( k+i, k+i ), lda )
246*
247 a( k+i, i ) = -wa
248 DO 50 j = k + i + 1, n
249 a( j, i ) = zero
250 50 CONTINUE
251 60 CONTINUE
252*
253* Store full hermitian matrix
254*
255 DO 80 j = 1, n
256 DO 70 i = j + 1, n
257 a( j, i ) = dconjg( a( i, j ) )
258 70 CONTINUE
259 80 CONTINUE
260 RETURN
261*
262* End of ZLAGHE
263*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zaxpy(n, za, zx, incx, zy, incy)
ZAXPY
Definition zaxpy.f:88
complex *16 function zdotc(n, zx, incx, zy, incy)
ZDOTC
Definition zdotc.f:83
subroutine zgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
ZGEMV
Definition zgemv.f:160
subroutine zgerc(m, n, alpha, x, incx, y, incy, a, lda)
ZGERC
Definition zgerc.f:130
subroutine zhemv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
ZHEMV
Definition zhemv.f:154
subroutine zher2(uplo, n, alpha, x, incx, y, incy, a, lda)
ZHER2
Definition zher2.f:150
subroutine zlarnv(idist, iseed, n, x)
ZLARNV returns a vector of random numbers from a uniform or normal distribution.
Definition zlarnv.f:97
real(wp) function dznrm2(n, x, incx)
DZNRM2
Definition dznrm2.f90:90
subroutine zscal(n, za, zx, incx)
ZSCAL
Definition zscal.f:78
Here is the call graph for this function:
Here is the caller graph for this function: