LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ztrsm()

subroutine ztrsm ( character  SIDE,
character  UPLO,
character  TRANSA,
character  DIAG,
integer  M,
integer  N,
complex*16  ALPHA,
complex*16, dimension(lda,*)  A,
integer  LDA,
complex*16, dimension(ldb,*)  B,
integer  LDB 
)

ZTRSM

Purpose:
 ZTRSM  solves one of the matrix equations

    op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,

 where alpha is a scalar, X and B are m by n matrices, A is a unit, or
 non-unit,  upper or lower triangular matrix  and  op( A )  is one  of

    op( A ) = A   or   op( A ) = A**T   or   op( A ) = A**H.

 The matrix X is overwritten on B.
Parameters
[in]SIDE
          SIDE is CHARACTER*1
           On entry, SIDE specifies whether op( A ) appears on the left
           or right of X as follows:

              SIDE = 'L' or 'l'   op( A )*X = alpha*B.

              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.
[in]UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix A is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix.

              UPLO = 'L' or 'l'   A is a lower triangular matrix.
[in]TRANSA
          TRANSA is CHARACTER*1
           On entry, TRANSA specifies the form of op( A ) to be used in
           the matrix multiplication as follows:

              TRANSA = 'N' or 'n'   op( A ) = A.

              TRANSA = 'T' or 't'   op( A ) = A**T.

              TRANSA = 'C' or 'c'   op( A ) = A**H.
[in]DIAG
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit triangular
           as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular.
[in]M
          M is INTEGER
           On entry, M specifies the number of rows of B. M must be at
           least zero.
[in]N
          N is INTEGER
           On entry, N specifies the number of columns of B.  N must be
           at least zero.
[in]ALPHA
          ALPHA is COMPLEX*16
           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
           zero then  A is not referenced and  B need not be set before
           entry.
[in]A
          A is COMPLEX*16 array, dimension ( LDA, k ),
           where k is m when SIDE = 'L' or 'l'
             and k is n when SIDE = 'R' or 'r'.
           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
           upper triangular part of the array  A must contain the upper
           triangular matrix  and the strictly lower triangular part of
           A is not referenced.
           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
           lower triangular part of the array  A must contain the lower
           triangular matrix  and the strictly upper triangular part of
           A is not referenced.
           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
           A  are not referenced either,  but are assumed to be  unity.
[in]LDA
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
           then LDA must be at least max( 1, n ).
[in,out]B
          B is COMPLEX*16 array, dimension ( LDB, N )
           Before entry,  the leading  m by n part of the array  B must
           contain  the  right-hand  side  matrix  B,  and  on exit  is
           overwritten by the solution matrix  X.
[in]LDB
          LDB is INTEGER
           On entry, LDB specifies the first dimension of B as declared
           in  the  calling  (sub)  program.   LDB  must  be  at  least
           max( 1, m ).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  Level 3 Blas routine.

  -- Written on 8-February-1989.
     Jack Dongarra, Argonne National Laboratory.
     Iain Duff, AERE Harwell.
     Jeremy Du Croz, Numerical Algorithms Group Ltd.
     Sven Hammarling, Numerical Algorithms Group Ltd.

Definition at line 179 of file ztrsm.f.

180*
181* -- Reference BLAS level3 routine --
182* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
183* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
184*
185* .. Scalar Arguments ..
186 COMPLEX*16 ALPHA
187 INTEGER LDA,LDB,M,N
188 CHARACTER DIAG,SIDE,TRANSA,UPLO
189* ..
190* .. Array Arguments ..
191 COMPLEX*16 A(LDA,*),B(LDB,*)
192* ..
193*
194* =====================================================================
195*
196* .. External Functions ..
197 LOGICAL LSAME
198 EXTERNAL lsame
199* ..
200* .. External Subroutines ..
201 EXTERNAL xerbla
202* ..
203* .. Intrinsic Functions ..
204 INTRINSIC dconjg,max
205* ..
206* .. Local Scalars ..
207 COMPLEX*16 TEMP
208 INTEGER I,INFO,J,K,NROWA
209 LOGICAL LSIDE,NOCONJ,NOUNIT,UPPER
210* ..
211* .. Parameters ..
212 COMPLEX*16 ONE
213 parameter(one= (1.0d+0,0.0d+0))
214 COMPLEX*16 ZERO
215 parameter(zero= (0.0d+0,0.0d+0))
216* ..
217*
218* Test the input parameters.
219*
220 lside = lsame(side,'L')
221 IF (lside) THEN
222 nrowa = m
223 ELSE
224 nrowa = n
225 END IF
226 noconj = lsame(transa,'T')
227 nounit = lsame(diag,'N')
228 upper = lsame(uplo,'U')
229*
230 info = 0
231 IF ((.NOT.lside) .AND. (.NOT.lsame(side,'R'))) THEN
232 info = 1
233 ELSE IF ((.NOT.upper) .AND. (.NOT.lsame(uplo,'L'))) THEN
234 info = 2
235 ELSE IF ((.NOT.lsame(transa,'N')) .AND.
236 + (.NOT.lsame(transa,'T')) .AND.
237 + (.NOT.lsame(transa,'C'))) THEN
238 info = 3
239 ELSE IF ((.NOT.lsame(diag,'U')) .AND. (.NOT.lsame(diag,'N'))) THEN
240 info = 4
241 ELSE IF (m.LT.0) THEN
242 info = 5
243 ELSE IF (n.LT.0) THEN
244 info = 6
245 ELSE IF (lda.LT.max(1,nrowa)) THEN
246 info = 9
247 ELSE IF (ldb.LT.max(1,m)) THEN
248 info = 11
249 END IF
250 IF (info.NE.0) THEN
251 CALL xerbla('ZTRSM ',info)
252 RETURN
253 END IF
254*
255* Quick return if possible.
256*
257 IF (m.EQ.0 .OR. n.EQ.0) RETURN
258*
259* And when alpha.eq.zero.
260*
261 IF (alpha.EQ.zero) THEN
262 DO 20 j = 1,n
263 DO 10 i = 1,m
264 b(i,j) = zero
265 10 CONTINUE
266 20 CONTINUE
267 RETURN
268 END IF
269*
270* Start the operations.
271*
272 IF (lside) THEN
273 IF (lsame(transa,'N')) THEN
274*
275* Form B := alpha*inv( A )*B.
276*
277 IF (upper) THEN
278 DO 60 j = 1,n
279 IF (alpha.NE.one) THEN
280 DO 30 i = 1,m
281 b(i,j) = alpha*b(i,j)
282 30 CONTINUE
283 END IF
284 DO 50 k = m,1,-1
285 IF (b(k,j).NE.zero) THEN
286 IF (nounit) b(k,j) = b(k,j)/a(k,k)
287 DO 40 i = 1,k - 1
288 b(i,j) = b(i,j) - b(k,j)*a(i,k)
289 40 CONTINUE
290 END IF
291 50 CONTINUE
292 60 CONTINUE
293 ELSE
294 DO 100 j = 1,n
295 IF (alpha.NE.one) THEN
296 DO 70 i = 1,m
297 b(i,j) = alpha*b(i,j)
298 70 CONTINUE
299 END IF
300 DO 90 k = 1,m
301 IF (b(k,j).NE.zero) THEN
302 IF (nounit) b(k,j) = b(k,j)/a(k,k)
303 DO 80 i = k + 1,m
304 b(i,j) = b(i,j) - b(k,j)*a(i,k)
305 80 CONTINUE
306 END IF
307 90 CONTINUE
308 100 CONTINUE
309 END IF
310 ELSE
311*
312* Form B := alpha*inv( A**T )*B
313* or B := alpha*inv( A**H )*B.
314*
315 IF (upper) THEN
316 DO 140 j = 1,n
317 DO 130 i = 1,m
318 temp = alpha*b(i,j)
319 IF (noconj) THEN
320 DO 110 k = 1,i - 1
321 temp = temp - a(k,i)*b(k,j)
322 110 CONTINUE
323 IF (nounit) temp = temp/a(i,i)
324 ELSE
325 DO 120 k = 1,i - 1
326 temp = temp - dconjg(a(k,i))*b(k,j)
327 120 CONTINUE
328 IF (nounit) temp = temp/dconjg(a(i,i))
329 END IF
330 b(i,j) = temp
331 130 CONTINUE
332 140 CONTINUE
333 ELSE
334 DO 180 j = 1,n
335 DO 170 i = m,1,-1
336 temp = alpha*b(i,j)
337 IF (noconj) THEN
338 DO 150 k = i + 1,m
339 temp = temp - a(k,i)*b(k,j)
340 150 CONTINUE
341 IF (nounit) temp = temp/a(i,i)
342 ELSE
343 DO 160 k = i + 1,m
344 temp = temp - dconjg(a(k,i))*b(k,j)
345 160 CONTINUE
346 IF (nounit) temp = temp/dconjg(a(i,i))
347 END IF
348 b(i,j) = temp
349 170 CONTINUE
350 180 CONTINUE
351 END IF
352 END IF
353 ELSE
354 IF (lsame(transa,'N')) THEN
355*
356* Form B := alpha*B*inv( A ).
357*
358 IF (upper) THEN
359 DO 230 j = 1,n
360 IF (alpha.NE.one) THEN
361 DO 190 i = 1,m
362 b(i,j) = alpha*b(i,j)
363 190 CONTINUE
364 END IF
365 DO 210 k = 1,j - 1
366 IF (a(k,j).NE.zero) THEN
367 DO 200 i = 1,m
368 b(i,j) = b(i,j) - a(k,j)*b(i,k)
369 200 CONTINUE
370 END IF
371 210 CONTINUE
372 IF (nounit) THEN
373 temp = one/a(j,j)
374 DO 220 i = 1,m
375 b(i,j) = temp*b(i,j)
376 220 CONTINUE
377 END IF
378 230 CONTINUE
379 ELSE
380 DO 280 j = n,1,-1
381 IF (alpha.NE.one) THEN
382 DO 240 i = 1,m
383 b(i,j) = alpha*b(i,j)
384 240 CONTINUE
385 END IF
386 DO 260 k = j + 1,n
387 IF (a(k,j).NE.zero) THEN
388 DO 250 i = 1,m
389 b(i,j) = b(i,j) - a(k,j)*b(i,k)
390 250 CONTINUE
391 END IF
392 260 CONTINUE
393 IF (nounit) THEN
394 temp = one/a(j,j)
395 DO 270 i = 1,m
396 b(i,j) = temp*b(i,j)
397 270 CONTINUE
398 END IF
399 280 CONTINUE
400 END IF
401 ELSE
402*
403* Form B := alpha*B*inv( A**T )
404* or B := alpha*B*inv( A**H ).
405*
406 IF (upper) THEN
407 DO 330 k = n,1,-1
408 IF (nounit) THEN
409 IF (noconj) THEN
410 temp = one/a(k,k)
411 ELSE
412 temp = one/dconjg(a(k,k))
413 END IF
414 DO 290 i = 1,m
415 b(i,k) = temp*b(i,k)
416 290 CONTINUE
417 END IF
418 DO 310 j = 1,k - 1
419 IF (a(j,k).NE.zero) THEN
420 IF (noconj) THEN
421 temp = a(j,k)
422 ELSE
423 temp = dconjg(a(j,k))
424 END IF
425 DO 300 i = 1,m
426 b(i,j) = b(i,j) - temp*b(i,k)
427 300 CONTINUE
428 END IF
429 310 CONTINUE
430 IF (alpha.NE.one) THEN
431 DO 320 i = 1,m
432 b(i,k) = alpha*b(i,k)
433 320 CONTINUE
434 END IF
435 330 CONTINUE
436 ELSE
437 DO 380 k = 1,n
438 IF (nounit) THEN
439 IF (noconj) THEN
440 temp = one/a(k,k)
441 ELSE
442 temp = one/dconjg(a(k,k))
443 END IF
444 DO 340 i = 1,m
445 b(i,k) = temp*b(i,k)
446 340 CONTINUE
447 END IF
448 DO 360 j = k + 1,n
449 IF (a(j,k).NE.zero) THEN
450 IF (noconj) THEN
451 temp = a(j,k)
452 ELSE
453 temp = dconjg(a(j,k))
454 END IF
455 DO 350 i = 1,m
456 b(i,j) = b(i,j) - temp*b(i,k)
457 350 CONTINUE
458 END IF
459 360 CONTINUE
460 IF (alpha.NE.one) THEN
461 DO 370 i = 1,m
462 b(i,k) = alpha*b(i,k)
463 370 CONTINUE
464 END IF
465 380 CONTINUE
466 END IF
467 END IF
468 END IF
469*
470 RETURN
471*
472* End of ZTRSM
473*
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
Here is the call graph for this function:
Here is the caller graph for this function: