LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ strsm()

subroutine strsm ( character  SIDE,
character  UPLO,
character  TRANSA,
character  DIAG,
integer  M,
integer  N,
real  ALPHA,
real, dimension(lda,*)  A,
integer  LDA,
real, dimension(ldb,*)  B,
integer  LDB 
)

STRSM

Purpose:
 STRSM  solves one of the matrix equations

    op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,

 where alpha is a scalar, X and B are m by n matrices, A is a unit, or
 non-unit,  upper or lower triangular matrix  and  op( A )  is one  of

    op( A ) = A   or   op( A ) = A**T.

 The matrix X is overwritten on B.
Parameters
[in]SIDE
          SIDE is CHARACTER*1
           On entry, SIDE specifies whether op( A ) appears on the left
           or right of X as follows:

              SIDE = 'L' or 'l'   op( A )*X = alpha*B.

              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.
[in]UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix A is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix.

              UPLO = 'L' or 'l'   A is a lower triangular matrix.
[in]TRANSA
          TRANSA is CHARACTER*1
           On entry, TRANSA specifies the form of op( A ) to be used in
           the matrix multiplication as follows:

              TRANSA = 'N' or 'n'   op( A ) = A.

              TRANSA = 'T' or 't'   op( A ) = A**T.

              TRANSA = 'C' or 'c'   op( A ) = A**T.
[in]DIAG
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit triangular
           as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular.
[in]M
          M is INTEGER
           On entry, M specifies the number of rows of B. M must be at
           least zero.
[in]N
          N is INTEGER
           On entry, N specifies the number of columns of B.  N must be
           at least zero.
[in]ALPHA
          ALPHA is REAL
           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
           zero then  A is not referenced and  B need not be set before
           entry.
[in]A
          A is REAL array, dimension ( LDA, k ),
           where k is m when SIDE = 'L' or 'l'
             and k is n when SIDE = 'R' or 'r'.
           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
           upper triangular part of the array  A must contain the upper
           triangular matrix  and the strictly lower triangular part of
           A is not referenced.
           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
           lower triangular part of the array  A must contain the lower
           triangular matrix  and the strictly upper triangular part of
           A is not referenced.
           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
           A  are not referenced either,  but are assumed to be  unity.
[in]LDA
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
           then LDA must be at least max( 1, n ).
[in,out]B
          B is REAL array, dimension ( LDB, N )
           Before entry,  the leading  m by n part of the array  B must
           contain  the  right-hand  side  matrix  B,  and  on exit  is
           overwritten by the solution matrix  X.
[in]LDB
          LDB is INTEGER
           On entry, LDB specifies the first dimension of B as declared
           in  the  calling  (sub)  program.   LDB  must  be  at  least
           max( 1, m ).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  Level 3 Blas routine.


  -- Written on 8-February-1989.
     Jack Dongarra, Argonne National Laboratory.
     Iain Duff, AERE Harwell.
     Jeremy Du Croz, Numerical Algorithms Group Ltd.
     Sven Hammarling, Numerical Algorithms Group Ltd.

Definition at line 180 of file strsm.f.

181*
182* -- Reference BLAS level3 routine --
183* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
184* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
185*
186* .. Scalar Arguments ..
187 REAL ALPHA
188 INTEGER LDA,LDB,M,N
189 CHARACTER DIAG,SIDE,TRANSA,UPLO
190* ..
191* .. Array Arguments ..
192 REAL A(LDA,*),B(LDB,*)
193* ..
194*
195* =====================================================================
196*
197* .. External Functions ..
198 LOGICAL LSAME
199 EXTERNAL lsame
200* ..
201* .. External Subroutines ..
202 EXTERNAL xerbla
203* ..
204* .. Intrinsic Functions ..
205 INTRINSIC max
206* ..
207* .. Local Scalars ..
208 REAL TEMP
209 INTEGER I,INFO,J,K,NROWA
210 LOGICAL LSIDE,NOUNIT,UPPER
211* ..
212* .. Parameters ..
213 REAL ONE,ZERO
214 parameter(one=1.0e+0,zero=0.0e+0)
215* ..
216*
217* Test the input parameters.
218*
219 lside = lsame(side,'L')
220 IF (lside) THEN
221 nrowa = m
222 ELSE
223 nrowa = n
224 END IF
225 nounit = lsame(diag,'N')
226 upper = lsame(uplo,'U')
227*
228 info = 0
229 IF ((.NOT.lside) .AND. (.NOT.lsame(side,'R'))) THEN
230 info = 1
231 ELSE IF ((.NOT.upper) .AND. (.NOT.lsame(uplo,'L'))) THEN
232 info = 2
233 ELSE IF ((.NOT.lsame(transa,'N')) .AND.
234 + (.NOT.lsame(transa,'T')) .AND.
235 + (.NOT.lsame(transa,'C'))) THEN
236 info = 3
237 ELSE IF ((.NOT.lsame(diag,'U')) .AND. (.NOT.lsame(diag,'N'))) THEN
238 info = 4
239 ELSE IF (m.LT.0) THEN
240 info = 5
241 ELSE IF (n.LT.0) THEN
242 info = 6
243 ELSE IF (lda.LT.max(1,nrowa)) THEN
244 info = 9
245 ELSE IF (ldb.LT.max(1,m)) THEN
246 info = 11
247 END IF
248 IF (info.NE.0) THEN
249 CALL xerbla('STRSM ',info)
250 RETURN
251 END IF
252*
253* Quick return if possible.
254*
255 IF (m.EQ.0 .OR. n.EQ.0) RETURN
256*
257* And when alpha.eq.zero.
258*
259 IF (alpha.EQ.zero) THEN
260 DO 20 j = 1,n
261 DO 10 i = 1,m
262 b(i,j) = zero
263 10 CONTINUE
264 20 CONTINUE
265 RETURN
266 END IF
267*
268* Start the operations.
269*
270 IF (lside) THEN
271 IF (lsame(transa,'N')) THEN
272*
273* Form B := alpha*inv( A )*B.
274*
275 IF (upper) THEN
276 DO 60 j = 1,n
277 IF (alpha.NE.one) THEN
278 DO 30 i = 1,m
279 b(i,j) = alpha*b(i,j)
280 30 CONTINUE
281 END IF
282 DO 50 k = m,1,-1
283 IF (b(k,j).NE.zero) THEN
284 IF (nounit) b(k,j) = b(k,j)/a(k,k)
285 DO 40 i = 1,k - 1
286 b(i,j) = b(i,j) - b(k,j)*a(i,k)
287 40 CONTINUE
288 END IF
289 50 CONTINUE
290 60 CONTINUE
291 ELSE
292 DO 100 j = 1,n
293 IF (alpha.NE.one) THEN
294 DO 70 i = 1,m
295 b(i,j) = alpha*b(i,j)
296 70 CONTINUE
297 END IF
298 DO 90 k = 1,m
299 IF (b(k,j).NE.zero) THEN
300 IF (nounit) b(k,j) = b(k,j)/a(k,k)
301 DO 80 i = k + 1,m
302 b(i,j) = b(i,j) - b(k,j)*a(i,k)
303 80 CONTINUE
304 END IF
305 90 CONTINUE
306 100 CONTINUE
307 END IF
308 ELSE
309*
310* Form B := alpha*inv( A**T )*B.
311*
312 IF (upper) THEN
313 DO 130 j = 1,n
314 DO 120 i = 1,m
315 temp = alpha*b(i,j)
316 DO 110 k = 1,i - 1
317 temp = temp - a(k,i)*b(k,j)
318 110 CONTINUE
319 IF (nounit) temp = temp/a(i,i)
320 b(i,j) = temp
321 120 CONTINUE
322 130 CONTINUE
323 ELSE
324 DO 160 j = 1,n
325 DO 150 i = m,1,-1
326 temp = alpha*b(i,j)
327 DO 140 k = i + 1,m
328 temp = temp - a(k,i)*b(k,j)
329 140 CONTINUE
330 IF (nounit) temp = temp/a(i,i)
331 b(i,j) = temp
332 150 CONTINUE
333 160 CONTINUE
334 END IF
335 END IF
336 ELSE
337 IF (lsame(transa,'N')) THEN
338*
339* Form B := alpha*B*inv( A ).
340*
341 IF (upper) THEN
342 DO 210 j = 1,n
343 IF (alpha.NE.one) THEN
344 DO 170 i = 1,m
345 b(i,j) = alpha*b(i,j)
346 170 CONTINUE
347 END IF
348 DO 190 k = 1,j - 1
349 IF (a(k,j).NE.zero) THEN
350 DO 180 i = 1,m
351 b(i,j) = b(i,j) - a(k,j)*b(i,k)
352 180 CONTINUE
353 END IF
354 190 CONTINUE
355 IF (nounit) THEN
356 temp = one/a(j,j)
357 DO 200 i = 1,m
358 b(i,j) = temp*b(i,j)
359 200 CONTINUE
360 END IF
361 210 CONTINUE
362 ELSE
363 DO 260 j = n,1,-1
364 IF (alpha.NE.one) THEN
365 DO 220 i = 1,m
366 b(i,j) = alpha*b(i,j)
367 220 CONTINUE
368 END IF
369 DO 240 k = j + 1,n
370 IF (a(k,j).NE.zero) THEN
371 DO 230 i = 1,m
372 b(i,j) = b(i,j) - a(k,j)*b(i,k)
373 230 CONTINUE
374 END IF
375 240 CONTINUE
376 IF (nounit) THEN
377 temp = one/a(j,j)
378 DO 250 i = 1,m
379 b(i,j) = temp*b(i,j)
380 250 CONTINUE
381 END IF
382 260 CONTINUE
383 END IF
384 ELSE
385*
386* Form B := alpha*B*inv( A**T ).
387*
388 IF (upper) THEN
389 DO 310 k = n,1,-1
390 IF (nounit) THEN
391 temp = one/a(k,k)
392 DO 270 i = 1,m
393 b(i,k) = temp*b(i,k)
394 270 CONTINUE
395 END IF
396 DO 290 j = 1,k - 1
397 IF (a(j,k).NE.zero) THEN
398 temp = a(j,k)
399 DO 280 i = 1,m
400 b(i,j) = b(i,j) - temp*b(i,k)
401 280 CONTINUE
402 END IF
403 290 CONTINUE
404 IF (alpha.NE.one) THEN
405 DO 300 i = 1,m
406 b(i,k) = alpha*b(i,k)
407 300 CONTINUE
408 END IF
409 310 CONTINUE
410 ELSE
411 DO 360 k = 1,n
412 IF (nounit) THEN
413 temp = one/a(k,k)
414 DO 320 i = 1,m
415 b(i,k) = temp*b(i,k)
416 320 CONTINUE
417 END IF
418 DO 340 j = k + 1,n
419 IF (a(j,k).NE.zero) THEN
420 temp = a(j,k)
421 DO 330 i = 1,m
422 b(i,j) = b(i,j) - temp*b(i,k)
423 330 CONTINUE
424 END IF
425 340 CONTINUE
426 IF (alpha.NE.one) THEN
427 DO 350 i = 1,m
428 b(i,k) = alpha*b(i,k)
429 350 CONTINUE
430 END IF
431 360 CONTINUE
432 END IF
433 END IF
434 END IF
435*
436 RETURN
437*
438* End of STRSM
439*
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
Here is the call graph for this function:
Here is the caller graph for this function: