LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
zlaqhp.f
Go to the documentation of this file.
1*> \brief \b ZLAQHP scales a Hermitian matrix stored in packed form.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZLAQHP + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqhp.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqhp.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqhp.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZLAQHP( UPLO, N, AP, S, SCOND, AMAX, EQUED )
20*
21* .. Scalar Arguments ..
22* CHARACTER EQUED, UPLO
23* INTEGER N
24* DOUBLE PRECISION AMAX, SCOND
25* ..
26* .. Array Arguments ..
27* DOUBLE PRECISION S( * )
28* COMPLEX*16 AP( * )
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> ZLAQHP equilibrates a Hermitian matrix A using the scaling factors
38*> in the vector S.
39*> \endverbatim
40*
41* Arguments:
42* ==========
43*
44*> \param[in] UPLO
45*> \verbatim
46*> UPLO is CHARACTER*1
47*> Specifies whether the upper or lower triangular part of the
48*> Hermitian matrix A is stored.
49*> = 'U': Upper triangular
50*> = 'L': Lower triangular
51*> \endverbatim
52*>
53*> \param[in] N
54*> \verbatim
55*> N is INTEGER
56*> The order of the matrix A. N >= 0.
57*> \endverbatim
58*>
59*> \param[in,out] AP
60*> \verbatim
61*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
62*> On entry, the upper or lower triangle of the Hermitian matrix
63*> A, packed columnwise in a linear array. The j-th column of A
64*> is stored in the array AP as follows:
65*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
66*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
67*>
68*> On exit, the equilibrated matrix: diag(S) * A * diag(S), in
69*> the same storage format as A.
70*> \endverbatim
71*>
72*> \param[in] S
73*> \verbatim
74*> S is DOUBLE PRECISION array, dimension (N)
75*> The scale factors for A.
76*> \endverbatim
77*>
78*> \param[in] SCOND
79*> \verbatim
80*> SCOND is DOUBLE PRECISION
81*> Ratio of the smallest S(i) to the largest S(i).
82*> \endverbatim
83*>
84*> \param[in] AMAX
85*> \verbatim
86*> AMAX is DOUBLE PRECISION
87*> Absolute value of largest matrix entry.
88*> \endverbatim
89*>
90*> \param[out] EQUED
91*> \verbatim
92*> EQUED is CHARACTER*1
93*> Specifies whether or not equilibration was done.
94*> = 'N': No equilibration.
95*> = 'Y': Equilibration was done, i.e., A has been replaced by
96*> diag(S) * A * diag(S).
97*> \endverbatim
98*
99*> \par Internal Parameters:
100* =========================
101*>
102*> \verbatim
103*> THRESH is a threshold value used to decide if scaling should be done
104*> based on the ratio of the scaling factors. If SCOND < THRESH,
105*> scaling is done.
106*>
107*> LARGE and SMALL are threshold values used to decide if scaling should
108*> be done based on the absolute size of the largest matrix element.
109*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
110*> \endverbatim
111*
112* Authors:
113* ========
114*
115*> \author Univ. of Tennessee
116*> \author Univ. of California Berkeley
117*> \author Univ. of Colorado Denver
118*> \author NAG Ltd.
119*
120*> \ingroup laqhp
121*
122* =====================================================================
123 SUBROUTINE zlaqhp( UPLO, N, AP, S, SCOND, AMAX, EQUED )
124*
125* -- LAPACK auxiliary routine --
126* -- LAPACK is a software package provided by Univ. of Tennessee, --
127* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
128*
129* .. Scalar Arguments ..
130 CHARACTER EQUED, UPLO
131 INTEGER N
132 DOUBLE PRECISION AMAX, SCOND
133* ..
134* .. Array Arguments ..
135 DOUBLE PRECISION S( * )
136 COMPLEX*16 AP( * )
137* ..
138*
139* =====================================================================
140*
141* .. Parameters ..
142 DOUBLE PRECISION ONE, THRESH
143 parameter( one = 1.0d+0, thresh = 0.1d+0 )
144* ..
145* .. Local Scalars ..
146 INTEGER I, J, JC
147 DOUBLE PRECISION CJ, LARGE, SMALL
148* ..
149* .. External Functions ..
150 LOGICAL LSAME
151 DOUBLE PRECISION DLAMCH
152 EXTERNAL lsame, dlamch
153* ..
154* .. Intrinsic Functions ..
155 INTRINSIC dble
156* ..
157* .. Executable Statements ..
158*
159* Quick return if possible
160*
161 IF( n.LE.0 ) THEN
162 equed = 'N'
163 RETURN
164 END IF
165*
166* Initialize LARGE and SMALL.
167*
168 small = dlamch( 'Safe minimum' ) / dlamch( 'Precision' )
169 large = one / small
170*
171 IF( scond.GE.thresh .AND. amax.GE.small .AND. amax.LE.large ) THEN
172*
173* No equilibration
174*
175 equed = 'N'
176 ELSE
177*
178* Replace A by diag(S) * A * diag(S).
179*
180 IF( lsame( uplo, 'U' ) ) THEN
181*
182* Upper triangle of A is stored.
183*
184 jc = 1
185 DO 20 j = 1, n
186 cj = s( j )
187 DO 10 i = 1, j - 1
188 ap( jc+i-1 ) = cj*s( i )*ap( jc+i-1 )
189 10 CONTINUE
190 ap( jc+j-1 ) = cj*cj*dble( ap( jc+j-1 ) )
191 jc = jc + j
192 20 CONTINUE
193 ELSE
194*
195* Lower triangle of A is stored.
196*
197 jc = 1
198 DO 40 j = 1, n
199 cj = s( j )
200 ap( jc ) = cj*cj*dble( ap( jc ) )
201 DO 30 i = j + 1, n
202 ap( jc+i-j ) = cj*s( i )*ap( jc+i-j )
203 30 CONTINUE
204 jc = jc + n - j + 1
205 40 CONTINUE
206 END IF
207 equed = 'Y'
208 END IF
209*
210 RETURN
211*
212* End of ZLAQHP
213*
214 END
subroutine zlaqhp(uplo, n, ap, s, scond, amax, equed)
ZLAQHP scales a Hermitian matrix stored in packed form.
Definition zlaqhp.f:124