LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine sggqrf | ( | integer | n, |
integer | m, | ||
integer | p, | ||
real, dimension( lda, * ) | a, | ||
integer | lda, | ||
real, dimension( * ) | taua, | ||
real, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
real, dimension( * ) | taub, | ||
real, dimension( * ) | work, | ||
integer | lwork, | ||
integer | info ) |
SGGQRF
Download SGGQRF + dependencies [TGZ] [ZIP] [TXT]
!> !> SGGQRF computes a generalized QR factorization of an N-by-M matrix A !> and an N-by-P matrix B: !> !> A = Q*R, B = Q*T*Z, !> !> where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal !> matrix, and R and T assume one of the forms: !> !> if N >= M, R = ( R11 ) M , or if N < M, R = ( R11 R12 ) N, !> ( 0 ) N-M N M-N !> M !> !> where R11 is upper triangular, and !> !> if N <= P, T = ( 0 T12 ) N, or if N > P, T = ( T11 ) N-P, !> P-N N ( T21 ) P !> P !> !> where T12 or T21 is upper triangular. !> !> In particular, if B is square and nonsingular, the GQR factorization !> of A and B implicitly gives the QR factorization of inv(B)*A: !> !> inv(B)*A = Z**T*(inv(T)*R) !> !> where inv(B) denotes the inverse of the matrix B, and Z**T denotes the !> transpose of the matrix Z. !>
[in] | N | !> N is INTEGER !> The number of rows of the matrices A and B. N >= 0. !> |
[in] | M | !> M is INTEGER !> The number of columns of the matrix A. M >= 0. !> |
[in] | P | !> P is INTEGER !> The number of columns of the matrix B. P >= 0. !> |
[in,out] | A | !> A is REAL array, dimension (LDA,M) !> On entry, the N-by-M matrix A. !> On exit, the elements on and above the diagonal of the array !> contain the min(N,M)-by-M upper trapezoidal matrix R (R is !> upper triangular if N >= M); the elements below the diagonal, !> with the array TAUA, represent the orthogonal matrix Q as a !> product of min(N,M) elementary reflectors (see Further !> Details). !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
[out] | TAUA | !> TAUA is REAL array, dimension (min(N,M)) !> The scalar factors of the elementary reflectors which !> represent the orthogonal matrix Q (see Further Details). !> |
[in,out] | B | !> B is REAL array, dimension (LDB,P) !> On entry, the N-by-P matrix B. !> On exit, if N <= P, the upper triangle of the subarray !> B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; !> if N > P, the elements on and above the (N-P)-th subdiagonal !> contain the N-by-P upper trapezoidal matrix T; the remaining !> elements, with the array TAUB, represent the orthogonal !> matrix Z as a product of elementary reflectors (see Further !> Details). !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
[out] | TAUB | !> TAUB is REAL array, dimension (min(N,P)) !> The scalar factors of the elementary reflectors which !> represent the orthogonal matrix Z (see Further Details). !> |
[out] | WORK | !> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
[in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,N,M,P). !> For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), !> where NB1 is the optimal blocksize for the QR factorization !> of an N-by-M matrix, NB2 is the optimal blocksize for the !> RQ factorization of an N-by-P matrix, and NB3 is the optimal !> blocksize for a call of SORMQR. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) . . . H(k), where k = min(n,m). !> !> Each H(i) has the form !> !> H(i) = I - taua * v * v**T !> !> where taua is a real scalar, and v is a real vector with !> v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), !> and taua in TAUA(i). !> To form Q explicitly, use LAPACK subroutine SORGQR. !> To use Q to update another matrix, use LAPACK subroutine SORMQR. !> !> The matrix Z is represented as a product of elementary reflectors !> !> Z = H(1) H(2) . . . H(k), where k = min(n,p). !> !> Each H(i) has the form !> !> H(i) = I - taub * v * v**T !> !> where taub is a real scalar, and v is a real vector with !> v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in !> B(n-k+i,1:p-k+i-1), and taub in TAUB(i). !> To form Z explicitly, use LAPACK subroutine SORGRQ. !> To use Z to update another matrix, use LAPACK subroutine SORMRQ. !>
Definition at line 211 of file sggqrf.f.