LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sggqrf()

subroutine sggqrf ( integer  n,
integer  m,
integer  p,
real, dimension( lda, * )  a,
integer  lda,
real, dimension( * )  taua,
real, dimension( ldb, * )  b,
integer  ldb,
real, dimension( * )  taub,
real, dimension( * )  work,
integer  lwork,
integer  info 
)

SGGQRF

Download SGGQRF + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SGGQRF computes a generalized QR factorization of an N-by-M matrix A
 and an N-by-P matrix B:

             A = Q*R,        B = Q*T*Z,

 where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
 matrix, and R and T assume one of the forms:

 if N >= M,  R = ( R11 ) M  ,   or if N < M,  R = ( R11  R12 ) N,
                 (  0  ) N-M                         N   M-N
                    M

 where R11 is upper triangular, and

 if N <= P,  T = ( 0  T12 ) N,   or if N > P,  T = ( T11 ) N-P,
                  P-N  N                           ( T21 ) P
                                                      P

 where T12 or T21 is upper triangular.

 In particular, if B is square and nonsingular, the GQR factorization
 of A and B implicitly gives the QR factorization of inv(B)*A:

              inv(B)*A = Z**T*(inv(T)*R)

 where inv(B) denotes the inverse of the matrix B, and Z**T denotes the
 transpose of the matrix Z.
Parameters
[in]N
          N is INTEGER
          The number of rows of the matrices A and B. N >= 0.
[in]M
          M is INTEGER
          The number of columns of the matrix A.  M >= 0.
[in]P
          P is INTEGER
          The number of columns of the matrix B.  P >= 0.
[in,out]A
          A is REAL array, dimension (LDA,M)
          On entry, the N-by-M matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the min(N,M)-by-M upper trapezoidal matrix R (R is
          upper triangular if N >= M); the elements below the diagonal,
          with the array TAUA, represent the orthogonal matrix Q as a
          product of min(N,M) elementary reflectors (see Further
          Details).
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,N).
[out]TAUA
          TAUA is REAL array, dimension (min(N,M))
          The scalar factors of the elementary reflectors which
          represent the orthogonal matrix Q (see Further Details).
[in,out]B
          B is REAL array, dimension (LDB,P)
          On entry, the N-by-P matrix B.
          On exit, if N <= P, the upper triangle of the subarray
          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
          if N > P, the elements on and above the (N-P)-th subdiagonal
          contain the N-by-P upper trapezoidal matrix T; the remaining
          elements, with the array TAUB, represent the orthogonal
          matrix Z as a product of elementary reflectors (see Further
          Details).
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,N).
[out]TAUB
          TAUB is REAL array, dimension (min(N,P))
          The scalar factors of the elementary reflectors which
          represent the orthogonal matrix Z (see Further Details).
[out]WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= max(1,N,M,P).
          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
          where NB1 is the optimal blocksize for the QR factorization
          of an N-by-M matrix, NB2 is the optimal blocksize for the
          RQ factorization of an N-by-P matrix, and NB3 is the optimal
          blocksize for a call of SORMQR.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) . . . H(k), where k = min(n,m).

  Each H(i) has the form

     H(i) = I - taua * v * v**T

  where taua is a real scalar, and v is a real vector with
  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
  and taua in TAUA(i).
  To form Q explicitly, use LAPACK subroutine SORGQR.
  To use Q to update another matrix, use LAPACK subroutine SORMQR.

  The matrix Z is represented as a product of elementary reflectors

     Z = H(1) H(2) . . . H(k), where k = min(n,p).

  Each H(i) has the form

     H(i) = I - taub * v * v**T

  where taub is a real scalar, and v is a real vector with
  v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in
  B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
  To form Z explicitly, use LAPACK subroutine SORGRQ.
  To use Z to update another matrix, use LAPACK subroutine SORMRQ.

Definition at line 213 of file sggqrf.f.

215*
216* -- LAPACK computational routine --
217* -- LAPACK is a software package provided by Univ. of Tennessee, --
218* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
219*
220* .. Scalar Arguments ..
221 INTEGER INFO, LDA, LDB, LWORK, M, N, P
222* ..
223* .. Array Arguments ..
224 REAL A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
225 $ WORK( * )
226* ..
227*
228* =====================================================================
229*
230* .. Local Scalars ..
231 LOGICAL LQUERY
232 INTEGER LOPT, LWKOPT, NB, NB1, NB2, NB3
233* ..
234* .. External Subroutines ..
235 EXTERNAL sgeqrf, sgerqf, sormqr, xerbla
236* ..
237* .. External Functions ..
238 INTEGER ILAENV
239 REAL SROUNDUP_LWORK
240 EXTERNAL ilaenv, sroundup_lwork
241* ..
242* .. Intrinsic Functions ..
243 INTRINSIC int, max, min
244* ..
245* .. Executable Statements ..
246*
247* Test the input parameters
248*
249 info = 0
250 nb1 = ilaenv( 1, 'SGEQRF', ' ', n, m, -1, -1 )
251 nb2 = ilaenv( 1, 'SGERQF', ' ', n, p, -1, -1 )
252 nb3 = ilaenv( 1, 'SORMQR', ' ', n, m, p, -1 )
253 nb = max( nb1, nb2, nb3 )
254 lwkopt = max( n, m, p )*nb
255 work( 1 ) = sroundup_lwork(lwkopt)
256 lquery = ( lwork.EQ.-1 )
257 IF( n.LT.0 ) THEN
258 info = -1
259 ELSE IF( m.LT.0 ) THEN
260 info = -2
261 ELSE IF( p.LT.0 ) THEN
262 info = -3
263 ELSE IF( lda.LT.max( 1, n ) ) THEN
264 info = -5
265 ELSE IF( ldb.LT.max( 1, n ) ) THEN
266 info = -8
267 ELSE IF( lwork.LT.max( 1, n, m, p ) .AND. .NOT.lquery ) THEN
268 info = -11
269 END IF
270 IF( info.NE.0 ) THEN
271 CALL xerbla( 'SGGQRF', -info )
272 RETURN
273 ELSE IF( lquery ) THEN
274 RETURN
275 END IF
276*
277* QR factorization of N-by-M matrix A: A = Q*R
278*
279 CALL sgeqrf( n, m, a, lda, taua, work, lwork, info )
280 lopt = int( work( 1 ) )
281*
282* Update B := Q**T*B.
283*
284 CALL sormqr( 'Left', 'Transpose', n, p, min( n, m ), a, lda, taua,
285 $ b, ldb, work, lwork, info )
286 lopt = max( lopt, int( work( 1 ) ) )
287*
288* RQ factorization of N-by-P matrix B: B = T*Z.
289*
290 CALL sgerqf( n, p, b, ldb, taub, work, lwork, info )
291 lwkopt = max( lopt, int( work( 1 ) ) )
292 work( 1 ) = sroundup_lwork( lwkopt )
293*
294 RETURN
295*
296* End of SGGQRF
297*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgeqrf(m, n, a, lda, tau, work, lwork, info)
SGEQRF
Definition sgeqrf.f:146
subroutine sgerqf(m, n, a, lda, tau, work, lwork, info)
SGERQF
Definition sgerqf.f:139
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine sormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
SORMQR
Definition sormqr.f:168
Here is the call graph for this function:
Here is the caller graph for this function: