LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ sgeqrs()

subroutine sgeqrs ( integer m,
integer n,
integer nrhs,
real, dimension( lda, * ) a,
integer lda,
real, dimension( * ) tau,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( lwork ) work,
integer lwork,
integer info )

SGEQRS

Purpose:
!> !> Solve the least squares problem !> min || A*X - B || !> using the QR factorization !> A = Q*R !> computed by SGEQRF. !>
Parameters
[in]M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
[in]N
!> N is INTEGER !> The number of columns of the matrix A. M >= N >= 0. !>
[in]NRHS
!> NRHS is INTEGER !> The number of columns of B. NRHS >= 0. !>
[in]A
!> A is REAL array, dimension (LDA,N) !> Details of the QR factorization of the original matrix A as !> returned by SGEQRF. !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= M. !>
[in]TAU
!> TAU is REAL array, dimension (N) !> Details of the orthogonal matrix Q. !>
[in,out]B
!> B is REAL array, dimension (LDB,NRHS) !> On entry, the m-by-nrhs right hand side matrix B. !> On exit, the n-by-nrhs solution matrix X. !>
[in]LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= M. !>
[out]WORK
!> WORK is REAL array, dimension (LWORK) !>
[in]LWORK
!> LWORK is INTEGER !> The length of the array WORK. LWORK must be at least NRHS, !> and should be at least NRHS*NB, where NB is the block size !> for this environment. !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 119 of file sgeqrs.f.

121*
122* -- LAPACK test routine --
123* -- LAPACK is a software package provided by Univ. of Tennessee, --
124* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
125*
126* .. Scalar Arguments ..
127 INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
128* ..
129* .. Array Arguments ..
130 REAL A( LDA, * ), B( LDB, * ), TAU( * ),
131 $ WORK( LWORK )
132* ..
133*
134* =====================================================================
135*
136* .. Parameters ..
137 REAL ONE
138 parameter( one = 1.0e+0 )
139* ..
140* .. External Subroutines ..
141 EXTERNAL sormqr, strsm, xerbla
142* ..
143* .. Intrinsic Functions ..
144 INTRINSIC max
145* ..
146* .. Executable Statements ..
147*
148* Test the input arguments.
149*
150 info = 0
151 IF( m.LT.0 ) THEN
152 info = -1
153 ELSE IF( n.LT.0 .OR. n.GT.m ) THEN
154 info = -2
155 ELSE IF( nrhs.LT.0 ) THEN
156 info = -3
157 ELSE IF( lda.LT.max( 1, m ) ) THEN
158 info = -5
159 ELSE IF( ldb.LT.max( 1, m ) ) THEN
160 info = -8
161 ELSE IF( lwork.LT.1 .OR. lwork.LT.nrhs .AND. m.GT.0 .AND. n.GT.0 )
162 $ THEN
163 info = -10
164 END IF
165 IF( info.NE.0 ) THEN
166 CALL xerbla( 'SGEQRS', -info )
167 RETURN
168 END IF
169*
170* Quick return if possible
171*
172 IF( n.EQ.0 .OR. nrhs.EQ.0 .OR. m.EQ.0 )
173 $ RETURN
174*
175* B := Q' * B
176*
177 CALL sormqr( 'Left', 'Transpose', m, nrhs, n, a, lda, tau, b, ldb,
178 $ work, lwork, info )
179*
180* Solve R*X = B(1:n,:)
181*
182 CALL strsm( 'Left', 'Upper', 'No transpose', 'Non-unit', n, nrhs,
183 $ one, a, lda, b, ldb )
184*
185 RETURN
186*
187* End of SGEQRS
188*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine strsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
STRSM
Definition strsm.f:181
subroutine sormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
SORMQR
Definition sormqr.f:166
Here is the call graph for this function: