LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zggesx()

subroutine zggesx ( character  JOBVSL,
character  JOBVSR,
character  SORT,
external  SELCTG,
character  SENSE,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldb, * )  B,
integer  LDB,
integer  SDIM,
complex*16, dimension( * )  ALPHA,
complex*16, dimension( * )  BETA,
complex*16, dimension( ldvsl, * )  VSL,
integer  LDVSL,
complex*16, dimension( ldvsr, * )  VSR,
integer  LDVSR,
double precision, dimension( 2 )  RCONDE,
double precision, dimension( 2 )  RCONDV,
complex*16, dimension( * )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  LIWORK,
logical, dimension( * )  BWORK,
integer  INFO 
)

ZGGESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices

Download ZGGESX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZGGESX computes for a pair of N-by-N complex nonsymmetric matrices
 (A,B), the generalized eigenvalues, the complex Schur form (S,T),
 and, optionally, the left and/or right matrices of Schur vectors (VSL
 and VSR).  This gives the generalized Schur factorization

      (A,B) = ( (VSL) S (VSR)**H, (VSL) T (VSR)**H )

 where (VSR)**H is the conjugate-transpose of VSR.

 Optionally, it also orders the eigenvalues so that a selected cluster
 of eigenvalues appears in the leading diagonal blocks of the upper
 triangular matrix S and the upper triangular matrix T; computes
 a reciprocal condition number for the average of the selected
 eigenvalues (RCONDE); and computes a reciprocal condition number for
 the right and left deflating subspaces corresponding to the selected
 eigenvalues (RCONDV). The leading columns of VSL and VSR then form
 an orthonormal basis for the corresponding left and right eigenspaces
 (deflating subspaces).

 A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
 or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
 usually represented as the pair (alpha,beta), as there is a
 reasonable interpretation for beta=0 or for both being zero.

 A pair of matrices (S,T) is in generalized complex Schur form if T is
 upper triangular with non-negative diagonal and S is upper
 triangular.
Parameters
[in]JOBVSL
          JOBVSL is CHARACTER*1
          = 'N':  do not compute the left Schur vectors;
          = 'V':  compute the left Schur vectors.
[in]JOBVSR
          JOBVSR is CHARACTER*1
          = 'N':  do not compute the right Schur vectors;
          = 'V':  compute the right Schur vectors.
[in]SORT
          SORT is CHARACTER*1
          Specifies whether or not to order the eigenvalues on the
          diagonal of the generalized Schur form.
          = 'N':  Eigenvalues are not ordered;
          = 'S':  Eigenvalues are ordered (see SELCTG).
[in]SELCTG
          SELCTG is a LOGICAL FUNCTION of two COMPLEX*16 arguments
          SELCTG must be declared EXTERNAL in the calling subroutine.
          If SORT = 'N', SELCTG is not referenced.
          If SORT = 'S', SELCTG is used to select eigenvalues to sort
          to the top left of the Schur form.
          Note that a selected complex eigenvalue may no longer satisfy
          SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
          ordering may change the value of complex eigenvalues
          (especially if the eigenvalue is ill-conditioned), in this
          case INFO is set to N+3 see INFO below).
[in]SENSE
          SENSE is CHARACTER*1
          Determines which reciprocal condition numbers are computed.
          = 'N': None are computed;
          = 'E': Computed for average of selected eigenvalues only;
          = 'V': Computed for selected deflating subspaces only;
          = 'B': Computed for both.
          If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
[in]N
          N is INTEGER
          The order of the matrices A, B, VSL, and VSR.  N >= 0.
[in,out]A
          A is COMPLEX*16 array, dimension (LDA, N)
          On entry, the first of the pair of matrices.
          On exit, A has been overwritten by its generalized Schur
          form S.
[in]LDA
          LDA is INTEGER
          The leading dimension of A.  LDA >= max(1,N).
[in,out]B
          B is COMPLEX*16 array, dimension (LDB, N)
          On entry, the second of the pair of matrices.
          On exit, B has been overwritten by its generalized Schur
          form T.
[in]LDB
          LDB is INTEGER
          The leading dimension of B.  LDB >= max(1,N).
[out]SDIM
          SDIM is INTEGER
          If SORT = 'N', SDIM = 0.
          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
          for which SELCTG is true.
[out]ALPHA
          ALPHA is COMPLEX*16 array, dimension (N)
[out]BETA
          BETA is COMPLEX*16 array, dimension (N)
          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
          generalized eigenvalues.  ALPHA(j) and BETA(j),j=1,...,N  are
          the diagonals of the complex Schur form (S,T).  BETA(j) will
          be non-negative real.

          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
          underflow, and BETA(j) may even be zero.  Thus, the user
          should avoid naively computing the ratio alpha/beta.
          However, ALPHA will be always less than and usually
          comparable with norm(A) in magnitude, and BETA always less
          than and usually comparable with norm(B).
[out]VSL
          VSL is COMPLEX*16 array, dimension (LDVSL,N)
          If JOBVSL = 'V', VSL will contain the left Schur vectors.
          Not referenced if JOBVSL = 'N'.
[in]LDVSL
          LDVSL is INTEGER
          The leading dimension of the matrix VSL. LDVSL >=1, and
          if JOBVSL = 'V', LDVSL >= N.
[out]VSR
          VSR is COMPLEX*16 array, dimension (LDVSR,N)
          If JOBVSR = 'V', VSR will contain the right Schur vectors.
          Not referenced if JOBVSR = 'N'.
[in]LDVSR
          LDVSR is INTEGER
          The leading dimension of the matrix VSR. LDVSR >= 1, and
          if JOBVSR = 'V', LDVSR >= N.
[out]RCONDE
          RCONDE is DOUBLE PRECISION array, dimension ( 2 )
          If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the
          reciprocal condition numbers for the average of the selected
          eigenvalues.
          Not referenced if SENSE = 'N' or 'V'.
[out]RCONDV
          RCONDV is DOUBLE PRECISION array, dimension ( 2 )
          If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the
          reciprocal condition number for the selected deflating
          subspaces.
          Not referenced if SENSE = 'N' or 'E'.
[out]WORK
          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B',
          LWORK >= MAX(1,2*N,2*SDIM*(N-SDIM)), else
          LWORK >= MAX(1,2*N).  Note that 2*SDIM*(N-SDIM) <= N*N/2.
          Note also that an error is only returned if
          LWORK < MAX(1,2*N), but if SENSE = 'E' or 'V' or 'B' this may
          not be large enough.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the bound on the optimal size of the WORK
          array and the minimum size of the IWORK array, returns these
          values as the first entries of the WORK and IWORK arrays, and
          no error message related to LWORK or LIWORK is issued by
          XERBLA.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension ( 8*N )
          Real workspace.
[out]IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
[in]LIWORK
          LIWORK is INTEGER
          The dimension of the array IWORK.
          If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
          LIWORK >= N+2.

          If LIWORK = -1, then a workspace query is assumed; the
          routine only calculates the bound on the optimal size of the
          WORK array and the minimum size of the IWORK array, returns
          these values as the first entries of the WORK and IWORK
          arrays, and no error message related to LWORK or LIWORK is
          issued by XERBLA.
[out]BWORK
          BWORK is LOGICAL array, dimension (N)
          Not referenced if SORT = 'N'.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          = 1,...,N:
                The QZ iteration failed.  (A,B) are not in Schur
                form, but ALPHA(j) and BETA(j) should be correct for
                j=INFO+1,...,N.
          > N:  =N+1: other than QZ iteration failed in ZHGEQZ
                =N+2: after reordering, roundoff changed values of
                      some complex eigenvalues so that leading
                      eigenvalues in the Generalized Schur form no
                      longer satisfy SELCTG=.TRUE.  This could also
                      be caused due to scaling.
                =N+3: reordering failed in ZTGSEN.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 326 of file zggesx.f.

330*
331* -- LAPACK driver routine --
332* -- LAPACK is a software package provided by Univ. of Tennessee, --
333* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
334*
335* .. Scalar Arguments ..
336 CHARACTER JOBVSL, JOBVSR, SENSE, SORT
337 INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
338 $ SDIM
339* ..
340* .. Array Arguments ..
341 LOGICAL BWORK( * )
342 INTEGER IWORK( * )
343 DOUBLE PRECISION RCONDE( 2 ), RCONDV( 2 ), RWORK( * )
344 COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
345 $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
346 $ WORK( * )
347* ..
348* .. Function Arguments ..
349 LOGICAL SELCTG
350 EXTERNAL selctg
351* ..
352*
353* =====================================================================
354*
355* .. Parameters ..
356 DOUBLE PRECISION ZERO, ONE
357 parameter( zero = 0.0d+0, one = 1.0d+0 )
358 COMPLEX*16 CZERO, CONE
359 parameter( czero = ( 0.0d+0, 0.0d+0 ),
360 $ cone = ( 1.0d+0, 0.0d+0 ) )
361* ..
362* .. Local Scalars ..
363 LOGICAL CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
364 $ LQUERY, WANTSB, WANTSE, WANTSN, WANTST, WANTSV
365 INTEGER I, ICOLS, IERR, IHI, IJOB, IJOBVL, IJOBVR,
366 $ ILEFT, ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK,
367 $ LIWMIN, LWRK, MAXWRK, MINWRK
368 DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PL,
369 $ PR, SMLNUM
370* ..
371* .. Local Arrays ..
372 DOUBLE PRECISION DIF( 2 )
373* ..
374* .. External Subroutines ..
375 EXTERNAL dlabad, xerbla, zgeqrf, zggbak, zggbal, zgghrd,
377 $ zunmqr
378* ..
379* .. External Functions ..
380 LOGICAL LSAME
381 INTEGER ILAENV
382 DOUBLE PRECISION DLAMCH, ZLANGE
383 EXTERNAL lsame, ilaenv, dlamch, zlange
384* ..
385* .. Intrinsic Functions ..
386 INTRINSIC max, sqrt
387* ..
388* .. Executable Statements ..
389*
390* Decode the input arguments
391*
392 IF( lsame( jobvsl, 'N' ) ) THEN
393 ijobvl = 1
394 ilvsl = .false.
395 ELSE IF( lsame( jobvsl, 'V' ) ) THEN
396 ijobvl = 2
397 ilvsl = .true.
398 ELSE
399 ijobvl = -1
400 ilvsl = .false.
401 END IF
402*
403 IF( lsame( jobvsr, 'N' ) ) THEN
404 ijobvr = 1
405 ilvsr = .false.
406 ELSE IF( lsame( jobvsr, 'V' ) ) THEN
407 ijobvr = 2
408 ilvsr = .true.
409 ELSE
410 ijobvr = -1
411 ilvsr = .false.
412 END IF
413*
414 wantst = lsame( sort, 'S' )
415 wantsn = lsame( sense, 'N' )
416 wantse = lsame( sense, 'E' )
417 wantsv = lsame( sense, 'V' )
418 wantsb = lsame( sense, 'B' )
419 lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 )
420 IF( wantsn ) THEN
421 ijob = 0
422 ELSE IF( wantse ) THEN
423 ijob = 1
424 ELSE IF( wantsv ) THEN
425 ijob = 2
426 ELSE IF( wantsb ) THEN
427 ijob = 4
428 END IF
429*
430* Test the input arguments
431*
432 info = 0
433 IF( ijobvl.LE.0 ) THEN
434 info = -1
435 ELSE IF( ijobvr.LE.0 ) THEN
436 info = -2
437 ELSE IF( ( .NOT.wantst ) .AND. ( .NOT.lsame( sort, 'N' ) ) ) THEN
438 info = -3
439 ELSE IF( .NOT.( wantsn .OR. wantse .OR. wantsv .OR. wantsb ) .OR.
440 $ ( .NOT.wantst .AND. .NOT.wantsn ) ) THEN
441 info = -5
442 ELSE IF( n.LT.0 ) THEN
443 info = -6
444 ELSE IF( lda.LT.max( 1, n ) ) THEN
445 info = -8
446 ELSE IF( ldb.LT.max( 1, n ) ) THEN
447 info = -10
448 ELSE IF( ldvsl.LT.1 .OR. ( ilvsl .AND. ldvsl.LT.n ) ) THEN
449 info = -15
450 ELSE IF( ldvsr.LT.1 .OR. ( ilvsr .AND. ldvsr.LT.n ) ) THEN
451 info = -17
452 END IF
453*
454* Compute workspace
455* (Note: Comments in the code beginning "Workspace:" describe the
456* minimal amount of workspace needed at that point in the code,
457* as well as the preferred amount for good performance.
458* NB refers to the optimal block size for the immediately
459* following subroutine, as returned by ILAENV.)
460*
461 IF( info.EQ.0 ) THEN
462 IF( n.GT.0) THEN
463 minwrk = 2*n
464 maxwrk = n*(1 + ilaenv( 1, 'ZGEQRF', ' ', n, 1, n, 0 ) )
465 maxwrk = max( maxwrk, n*( 1 +
466 $ ilaenv( 1, 'ZUNMQR', ' ', n, 1, n, -1 ) ) )
467 IF( ilvsl ) THEN
468 maxwrk = max( maxwrk, n*( 1 +
469 $ ilaenv( 1, 'ZUNGQR', ' ', n, 1, n, -1 ) ) )
470 END IF
471 lwrk = maxwrk
472 IF( ijob.GE.1 )
473 $ lwrk = max( lwrk, n*n/2 )
474 ELSE
475 minwrk = 1
476 maxwrk = 1
477 lwrk = 1
478 END IF
479 work( 1 ) = lwrk
480 IF( wantsn .OR. n.EQ.0 ) THEN
481 liwmin = 1
482 ELSE
483 liwmin = n + 2
484 END IF
485 iwork( 1 ) = liwmin
486*
487 IF( lwork.LT.minwrk .AND. .NOT.lquery ) THEN
488 info = -21
489 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery) THEN
490 info = -24
491 END IF
492 END IF
493*
494 IF( info.NE.0 ) THEN
495 CALL xerbla( 'ZGGESX', -info )
496 RETURN
497 ELSE IF (lquery) THEN
498 RETURN
499 END IF
500*
501* Quick return if possible
502*
503 IF( n.EQ.0 ) THEN
504 sdim = 0
505 RETURN
506 END IF
507*
508* Get machine constants
509*
510 eps = dlamch( 'P' )
511 smlnum = dlamch( 'S' )
512 bignum = one / smlnum
513 CALL dlabad( smlnum, bignum )
514 smlnum = sqrt( smlnum ) / eps
515 bignum = one / smlnum
516*
517* Scale A if max element outside range [SMLNUM,BIGNUM]
518*
519 anrm = zlange( 'M', n, n, a, lda, rwork )
520 ilascl = .false.
521 IF( anrm.GT.zero .AND. anrm.LT.smlnum ) THEN
522 anrmto = smlnum
523 ilascl = .true.
524 ELSE IF( anrm.GT.bignum ) THEN
525 anrmto = bignum
526 ilascl = .true.
527 END IF
528 IF( ilascl )
529 $ CALL zlascl( 'G', 0, 0, anrm, anrmto, n, n, a, lda, ierr )
530*
531* Scale B if max element outside range [SMLNUM,BIGNUM]
532*
533 bnrm = zlange( 'M', n, n, b, ldb, rwork )
534 ilbscl = .false.
535 IF( bnrm.GT.zero .AND. bnrm.LT.smlnum ) THEN
536 bnrmto = smlnum
537 ilbscl = .true.
538 ELSE IF( bnrm.GT.bignum ) THEN
539 bnrmto = bignum
540 ilbscl = .true.
541 END IF
542 IF( ilbscl )
543 $ CALL zlascl( 'G', 0, 0, bnrm, bnrmto, n, n, b, ldb, ierr )
544*
545* Permute the matrix to make it more nearly triangular
546* (Real Workspace: need 6*N)
547*
548 ileft = 1
549 iright = n + 1
550 irwrk = iright + n
551 CALL zggbal( 'P', n, a, lda, b, ldb, ilo, ihi, rwork( ileft ),
552 $ rwork( iright ), rwork( irwrk ), ierr )
553*
554* Reduce B to triangular form (QR decomposition of B)
555* (Complex Workspace: need N, prefer N*NB)
556*
557 irows = ihi + 1 - ilo
558 icols = n + 1 - ilo
559 itau = 1
560 iwrk = itau + irows
561 CALL zgeqrf( irows, icols, b( ilo, ilo ), ldb, work( itau ),
562 $ work( iwrk ), lwork+1-iwrk, ierr )
563*
564* Apply the unitary transformation to matrix A
565* (Complex Workspace: need N, prefer N*NB)
566*
567 CALL zunmqr( 'L', 'C', irows, icols, irows, b( ilo, ilo ), ldb,
568 $ work( itau ), a( ilo, ilo ), lda, work( iwrk ),
569 $ lwork+1-iwrk, ierr )
570*
571* Initialize VSL
572* (Complex Workspace: need N, prefer N*NB)
573*
574 IF( ilvsl ) THEN
575 CALL zlaset( 'Full', n, n, czero, cone, vsl, ldvsl )
576 IF( irows.GT.1 ) THEN
577 CALL zlacpy( 'L', irows-1, irows-1, b( ilo+1, ilo ), ldb,
578 $ vsl( ilo+1, ilo ), ldvsl )
579 END IF
580 CALL zungqr( irows, irows, irows, vsl( ilo, ilo ), ldvsl,
581 $ work( itau ), work( iwrk ), lwork+1-iwrk, ierr )
582 END IF
583*
584* Initialize VSR
585*
586 IF( ilvsr )
587 $ CALL zlaset( 'Full', n, n, czero, cone, vsr, ldvsr )
588*
589* Reduce to generalized Hessenberg form
590* (Workspace: none needed)
591*
592 CALL zgghrd( jobvsl, jobvsr, n, ilo, ihi, a, lda, b, ldb, vsl,
593 $ ldvsl, vsr, ldvsr, ierr )
594*
595 sdim = 0
596*
597* Perform QZ algorithm, computing Schur vectors if desired
598* (Complex Workspace: need N)
599* (Real Workspace: need N)
600*
601 iwrk = itau
602 CALL zhgeqz( 'S', jobvsl, jobvsr, n, ilo, ihi, a, lda, b, ldb,
603 $ alpha, beta, vsl, ldvsl, vsr, ldvsr, work( iwrk ),
604 $ lwork+1-iwrk, rwork( irwrk ), ierr )
605 IF( ierr.NE.0 ) THEN
606 IF( ierr.GT.0 .AND. ierr.LE.n ) THEN
607 info = ierr
608 ELSE IF( ierr.GT.n .AND. ierr.LE.2*n ) THEN
609 info = ierr - n
610 ELSE
611 info = n + 1
612 END IF
613 GO TO 40
614 END IF
615*
616* Sort eigenvalues ALPHA/BETA and compute the reciprocal of
617* condition number(s)
618*
619 IF( wantst ) THEN
620*
621* Undo scaling on eigenvalues before SELCTGing
622*
623 IF( ilascl )
624 $ CALL zlascl( 'G', 0, 0, anrmto, anrm, n, 1, alpha, n, ierr )
625 IF( ilbscl )
626 $ CALL zlascl( 'G', 0, 0, bnrmto, bnrm, n, 1, beta, n, ierr )
627*
628* Select eigenvalues
629*
630 DO 10 i = 1, n
631 bwork( i ) = selctg( alpha( i ), beta( i ) )
632 10 CONTINUE
633*
634* Reorder eigenvalues, transform Generalized Schur vectors, and
635* compute reciprocal condition numbers
636* (Complex Workspace: If IJOB >= 1, need MAX(1, 2*SDIM*(N-SDIM))
637* otherwise, need 1 )
638*
639 CALL ztgsen( ijob, ilvsl, ilvsr, bwork, n, a, lda, b, ldb,
640 $ alpha, beta, vsl, ldvsl, vsr, ldvsr, sdim, pl, pr,
641 $ dif, work( iwrk ), lwork-iwrk+1, iwork, liwork,
642 $ ierr )
643*
644 IF( ijob.GE.1 )
645 $ maxwrk = max( maxwrk, 2*sdim*( n-sdim ) )
646 IF( ierr.EQ.-21 ) THEN
647*
648* not enough complex workspace
649*
650 info = -21
651 ELSE
652 IF( ijob.EQ.1 .OR. ijob.EQ.4 ) THEN
653 rconde( 1 ) = pl
654 rconde( 2 ) = pr
655 END IF
656 IF( ijob.EQ.2 .OR. ijob.EQ.4 ) THEN
657 rcondv( 1 ) = dif( 1 )
658 rcondv( 2 ) = dif( 2 )
659 END IF
660 IF( ierr.EQ.1 )
661 $ info = n + 3
662 END IF
663*
664 END IF
665*
666* Apply permutation to VSL and VSR
667* (Workspace: none needed)
668*
669 IF( ilvsl )
670 $ CALL zggbak( 'P', 'L', n, ilo, ihi, rwork( ileft ),
671 $ rwork( iright ), n, vsl, ldvsl, ierr )
672*
673 IF( ilvsr )
674 $ CALL zggbak( 'P', 'R', n, ilo, ihi, rwork( ileft ),
675 $ rwork( iright ), n, vsr, ldvsr, ierr )
676*
677* Undo scaling
678*
679 IF( ilascl ) THEN
680 CALL zlascl( 'U', 0, 0, anrmto, anrm, n, n, a, lda, ierr )
681 CALL zlascl( 'G', 0, 0, anrmto, anrm, n, 1, alpha, n, ierr )
682 END IF
683*
684 IF( ilbscl ) THEN
685 CALL zlascl( 'U', 0, 0, bnrmto, bnrm, n, n, b, ldb, ierr )
686 CALL zlascl( 'G', 0, 0, bnrmto, bnrm, n, 1, beta, n, ierr )
687 END IF
688*
689 IF( wantst ) THEN
690*
691* Check if reordering is correct
692*
693 lastsl = .true.
694 sdim = 0
695 DO 30 i = 1, n
696 cursl = selctg( alpha( i ), beta( i ) )
697 IF( cursl )
698 $ sdim = sdim + 1
699 IF( cursl .AND. .NOT.lastsl )
700 $ info = n + 2
701 lastsl = cursl
702 30 CONTINUE
703*
704 END IF
705*
706 40 CONTINUE
707*
708 work( 1 ) = maxwrk
709 iwork( 1 ) = liwmin
710*
711 RETURN
712*
713* End of ZGGESX
714*
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:69
subroutine dlabad(SMALL, LARGE)
DLABAD
Definition: dlabad.f:74
integer function ilaenv(ISPEC, NAME, OPTS, N1, N2, N3, N4)
ILAENV
Definition: ilaenv.f:162
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
subroutine zggbal(JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE, WORK, INFO)
ZGGBAL
Definition: zggbal.f:177
subroutine zggbak(JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V, LDV, INFO)
ZGGBAK
Definition: zggbak.f:148
double precision function zlange(NORM, M, N, A, LDA, WORK)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: zlange.f:115
subroutine zhgeqz(JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT, ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, INFO)
ZHGEQZ
Definition: zhgeqz.f:284
subroutine zlascl(TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO)
ZLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition: zlascl.f:143
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
subroutine zlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: zlaset.f:106
subroutine ztgsen(IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB, ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO)
ZTGSEN
Definition: ztgsen.f:433
subroutine zungqr(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
ZUNGQR
Definition: zungqr.f:128
subroutine zgghrd(COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ, Z, LDZ, INFO)
ZGGHRD
Definition: zgghrd.f:204
subroutine zunmqr(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
ZUNMQR
Definition: zunmqr.f:167
subroutine zgeqrf(M, N, A, LDA, TAU, WORK, LWORK, INFO)
ZGEQRF VARIANT: left-looking Level 3 BLAS of the algorithm.
Definition: zgeqrf.f:152
Here is the call graph for this function:
Here is the caller graph for this function: