LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zgges3()

subroutine zgges3 ( character  JOBVSL,
character  JOBVSR,
character  SORT,
external  SELCTG,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldb, * )  B,
integer  LDB,
integer  SDIM,
complex*16, dimension( * )  ALPHA,
complex*16, dimension( * )  BETA,
complex*16, dimension( ldvsl, * )  VSL,
integer  LDVSL,
complex*16, dimension( ldvsr, * )  VSR,
integer  LDVSR,
complex*16, dimension( * )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
logical, dimension( * )  BWORK,
integer  INFO 
)

ZGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices (blocked algorithm)

Download ZGGES3 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZGGES3 computes for a pair of N-by-N complex nonsymmetric matrices
 (A,B), the generalized eigenvalues, the generalized complex Schur
 form (S, T), and optionally left and/or right Schur vectors (VSL
 and VSR). This gives the generalized Schur factorization

         (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )

 where (VSR)**H is the conjugate-transpose of VSR.

 Optionally, it also orders the eigenvalues so that a selected cluster
 of eigenvalues appears in the leading diagonal blocks of the upper
 triangular matrix S and the upper triangular matrix T. The leading
 columns of VSL and VSR then form an unitary basis for the
 corresponding left and right eigenspaces (deflating subspaces).

 (If only the generalized eigenvalues are needed, use the driver
 ZGGEV instead, which is faster.)

 A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
 or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
 usually represented as the pair (alpha,beta), as there is a
 reasonable interpretation for beta=0, and even for both being zero.

 A pair of matrices (S,T) is in generalized complex Schur form if S
 and T are upper triangular and, in addition, the diagonal elements
 of T are non-negative real numbers.
Parameters
[in]JOBVSL
          JOBVSL is CHARACTER*1
          = 'N':  do not compute the left Schur vectors;
          = 'V':  compute the left Schur vectors.
[in]JOBVSR
          JOBVSR is CHARACTER*1
          = 'N':  do not compute the right Schur vectors;
          = 'V':  compute the right Schur vectors.
[in]SORT
          SORT is CHARACTER*1
          Specifies whether or not to order the eigenvalues on the
          diagonal of the generalized Schur form.
          = 'N':  Eigenvalues are not ordered;
          = 'S':  Eigenvalues are ordered (see SELCTG).
[in]SELCTG
          SELCTG is a LOGICAL FUNCTION of two COMPLEX*16 arguments
          SELCTG must be declared EXTERNAL in the calling subroutine.
          If SORT = 'N', SELCTG is not referenced.
          If SORT = 'S', SELCTG is used to select eigenvalues to sort
          to the top left of the Schur form.
          An eigenvalue ALPHA(j)/BETA(j) is selected if
          SELCTG(ALPHA(j),BETA(j)) is true.

          Note that a selected complex eigenvalue may no longer satisfy
          SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
          ordering may change the value of complex eigenvalues
          (especially if the eigenvalue is ill-conditioned), in this
          case INFO is set to N+2 (See INFO below).
[in]N
          N is INTEGER
          The order of the matrices A, B, VSL, and VSR.  N >= 0.
[in,out]A
          A is COMPLEX*16 array, dimension (LDA, N)
          On entry, the first of the pair of matrices.
          On exit, A has been overwritten by its generalized Schur
          form S.
[in]LDA
          LDA is INTEGER
          The leading dimension of A.  LDA >= max(1,N).
[in,out]B
          B is COMPLEX*16 array, dimension (LDB, N)
          On entry, the second of the pair of matrices.
          On exit, B has been overwritten by its generalized Schur
          form T.
[in]LDB
          LDB is INTEGER
          The leading dimension of B.  LDB >= max(1,N).
[out]SDIM
          SDIM is INTEGER
          If SORT = 'N', SDIM = 0.
          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
          for which SELCTG is true.
[out]ALPHA
          ALPHA is COMPLEX*16 array, dimension (N)
[out]BETA
          BETA is COMPLEX*16 array, dimension (N)
          On exit,  ALPHA(j)/BETA(j), j=1,...,N, will be the
          generalized eigenvalues.  ALPHA(j), j=1,...,N  and  BETA(j),
          j=1,...,N  are the diagonals of the complex Schur form (A,B)
          output by ZGGES3. The  BETA(j) will be non-negative real.

          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
          underflow, and BETA(j) may even be zero.  Thus, the user
          should avoid naively computing the ratio alpha/beta.
          However, ALPHA will be always less than and usually
          comparable with norm(A) in magnitude, and BETA always less
          than and usually comparable with norm(B).
[out]VSL
          VSL is COMPLEX*16 array, dimension (LDVSL,N)
          If JOBVSL = 'V', VSL will contain the left Schur vectors.
          Not referenced if JOBVSL = 'N'.
[in]LDVSL
          LDVSL is INTEGER
          The leading dimension of the matrix VSL. LDVSL >= 1, and
          if JOBVSL = 'V', LDVSL >= N.
[out]VSR
          VSR is COMPLEX*16 array, dimension (LDVSR,N)
          If JOBVSR = 'V', VSR will contain the right Schur vectors.
          Not referenced if JOBVSR = 'N'.
[in]LDVSR
          LDVSR is INTEGER
          The leading dimension of the matrix VSR. LDVSR >= 1, and
          if JOBVSR = 'V', LDVSR >= N.
[out]WORK
          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (8*N)
[out]BWORK
          BWORK is LOGICAL array, dimension (N)
          Not referenced if SORT = 'N'.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          =1,...,N:
                The QZ iteration failed.  (A,B) are not in Schur
                form, but ALPHA(j) and BETA(j) should be correct for
                j=INFO+1,...,N.
          > N:  =N+1: other than QZ iteration failed in ZLAQZ0
                =N+2: after reordering, roundoff changed values of
                      some complex eigenvalues so that leading
                      eigenvalues in the Generalized Schur form no
                      longer satisfy SELCTG=.TRUE.  This could also
                      be caused due to scaling.
                =N+3: reordering failed in ZTGSEN.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 266 of file zgges3.f.

269*
270* -- LAPACK driver routine --
271* -- LAPACK is a software package provided by Univ. of Tennessee, --
272* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
273*
274* .. Scalar Arguments ..
275 CHARACTER JOBVSL, JOBVSR, SORT
276 INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
277* ..
278* .. Array Arguments ..
279 LOGICAL BWORK( * )
280 DOUBLE PRECISION RWORK( * )
281 COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
282 $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
283 $ WORK( * )
284* ..
285* .. Function Arguments ..
286 LOGICAL SELCTG
287 EXTERNAL selctg
288* ..
289*
290* =====================================================================
291*
292* .. Parameters ..
293 DOUBLE PRECISION ZERO, ONE
294 parameter( zero = 0.0d0, one = 1.0d0 )
295 COMPLEX*16 CZERO, CONE
296 parameter( czero = ( 0.0d0, 0.0d0 ),
297 $ cone = ( 1.0d0, 0.0d0 ) )
298* ..
299* .. Local Scalars ..
300 LOGICAL CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
301 $ LQUERY, WANTST
302 INTEGER I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
303 $ ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKOPT
304 DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
305 $ PVSR, SMLNUM
306* ..
307* .. Local Arrays ..
308 INTEGER IDUM( 1 )
309 DOUBLE PRECISION DIF( 2 )
310* ..
311* .. External Subroutines ..
312 EXTERNAL dlabad, xerbla, zgeqrf, zggbak, zggbal, zgghd3,
314 $ zunmqr
315* ..
316* .. External Functions ..
317 LOGICAL LSAME
318 DOUBLE PRECISION DLAMCH, ZLANGE
319 EXTERNAL lsame, dlamch, zlange
320* ..
321* .. Intrinsic Functions ..
322 INTRINSIC max, sqrt
323* ..
324* .. Executable Statements ..
325*
326* Decode the input arguments
327*
328 IF( lsame( jobvsl, 'N' ) ) THEN
329 ijobvl = 1
330 ilvsl = .false.
331 ELSE IF( lsame( jobvsl, 'V' ) ) THEN
332 ijobvl = 2
333 ilvsl = .true.
334 ELSE
335 ijobvl = -1
336 ilvsl = .false.
337 END IF
338*
339 IF( lsame( jobvsr, 'N' ) ) THEN
340 ijobvr = 1
341 ilvsr = .false.
342 ELSE IF( lsame( jobvsr, 'V' ) ) THEN
343 ijobvr = 2
344 ilvsr = .true.
345 ELSE
346 ijobvr = -1
347 ilvsr = .false.
348 END IF
349*
350 wantst = lsame( sort, 'S' )
351*
352* Test the input arguments
353*
354 info = 0
355 lquery = ( lwork.EQ.-1 )
356 IF( ijobvl.LE.0 ) THEN
357 info = -1
358 ELSE IF( ijobvr.LE.0 ) THEN
359 info = -2
360 ELSE IF( ( .NOT.wantst ) .AND. ( .NOT.lsame( sort, 'N' ) ) ) THEN
361 info = -3
362 ELSE IF( n.LT.0 ) THEN
363 info = -5
364 ELSE IF( lda.LT.max( 1, n ) ) THEN
365 info = -7
366 ELSE IF( ldb.LT.max( 1, n ) ) THEN
367 info = -9
368 ELSE IF( ldvsl.LT.1 .OR. ( ilvsl .AND. ldvsl.LT.n ) ) THEN
369 info = -14
370 ELSE IF( ldvsr.LT.1 .OR. ( ilvsr .AND. ldvsr.LT.n ) ) THEN
371 info = -16
372 ELSE IF( lwork.LT.max( 1, 2*n ) .AND. .NOT.lquery ) THEN
373 info = -18
374 END IF
375*
376* Compute workspace
377*
378 IF( info.EQ.0 ) THEN
379 CALL zgeqrf( n, n, b, ldb, work, work, -1, ierr )
380 lwkopt = max( 1, n + int( work( 1 ) ) )
381 CALL zunmqr( 'L', 'C', n, n, n, b, ldb, work, a, lda, work,
382 $ -1, ierr )
383 lwkopt = max( lwkopt, n + int( work( 1 ) ) )
384 IF( ilvsl ) THEN
385 CALL zungqr( n, n, n, vsl, ldvsl, work, work, -1, ierr )
386 lwkopt = max( lwkopt, n + int( work( 1 ) ) )
387 END IF
388 CALL zgghd3( jobvsl, jobvsr, n, 1, n, a, lda, b, ldb, vsl,
389 $ ldvsl, vsr, ldvsr, work, -1, ierr )
390 lwkopt = max( lwkopt, n + int( work( 1 ) ) )
391 CALL zlaqz0( 'S', jobvsl, jobvsr, n, 1, n, a, lda, b, ldb,
392 $ alpha, beta, vsl, ldvsl, vsr, ldvsr, work, -1,
393 $ rwork, 0, ierr )
394 lwkopt = max( lwkopt, int( work( 1 ) ) )
395 IF( wantst ) THEN
396 CALL ztgsen( 0, ilvsl, ilvsr, bwork, n, a, lda, b, ldb,
397 $ alpha, beta, vsl, ldvsl, vsr, ldvsr, sdim,
398 $ pvsl, pvsr, dif, work, -1, idum, 1, ierr )
399 lwkopt = max( lwkopt, int( work( 1 ) ) )
400 END IF
401 work( 1 ) = dcmplx( lwkopt )
402 END IF
403*
404 IF( info.NE.0 ) THEN
405 CALL xerbla( 'ZGGES3 ', -info )
406 RETURN
407 ELSE IF( lquery ) THEN
408 RETURN
409 END IF
410*
411* Quick return if possible
412*
413 IF( n.EQ.0 ) THEN
414 sdim = 0
415 RETURN
416 END IF
417*
418* Get machine constants
419*
420 eps = dlamch( 'P' )
421 smlnum = dlamch( 'S' )
422 bignum = one / smlnum
423 CALL dlabad( smlnum, bignum )
424 smlnum = sqrt( smlnum ) / eps
425 bignum = one / smlnum
426*
427* Scale A if max element outside range [SMLNUM,BIGNUM]
428*
429 anrm = zlange( 'M', n, n, a, lda, rwork )
430 ilascl = .false.
431 IF( anrm.GT.zero .AND. anrm.LT.smlnum ) THEN
432 anrmto = smlnum
433 ilascl = .true.
434 ELSE IF( anrm.GT.bignum ) THEN
435 anrmto = bignum
436 ilascl = .true.
437 END IF
438*
439 IF( ilascl )
440 $ CALL zlascl( 'G', 0, 0, anrm, anrmto, n, n, a, lda, ierr )
441*
442* Scale B if max element outside range [SMLNUM,BIGNUM]
443*
444 bnrm = zlange( 'M', n, n, b, ldb, rwork )
445 ilbscl = .false.
446 IF( bnrm.GT.zero .AND. bnrm.LT.smlnum ) THEN
447 bnrmto = smlnum
448 ilbscl = .true.
449 ELSE IF( bnrm.GT.bignum ) THEN
450 bnrmto = bignum
451 ilbscl = .true.
452 END IF
453*
454 IF( ilbscl )
455 $ CALL zlascl( 'G', 0, 0, bnrm, bnrmto, n, n, b, ldb, ierr )
456*
457* Permute the matrix to make it more nearly triangular
458*
459 ileft = 1
460 iright = n + 1
461 irwrk = iright + n
462 CALL zggbal( 'P', n, a, lda, b, ldb, ilo, ihi, rwork( ileft ),
463 $ rwork( iright ), rwork( irwrk ), ierr )
464*
465* Reduce B to triangular form (QR decomposition of B)
466*
467 irows = ihi + 1 - ilo
468 icols = n + 1 - ilo
469 itau = 1
470 iwrk = itau + irows
471 CALL zgeqrf( irows, icols, b( ilo, ilo ), ldb, work( itau ),
472 $ work( iwrk ), lwork+1-iwrk, ierr )
473*
474* Apply the orthogonal transformation to matrix A
475*
476 CALL zunmqr( 'L', 'C', irows, icols, irows, b( ilo, ilo ), ldb,
477 $ work( itau ), a( ilo, ilo ), lda, work( iwrk ),
478 $ lwork+1-iwrk, ierr )
479*
480* Initialize VSL
481*
482 IF( ilvsl ) THEN
483 CALL zlaset( 'Full', n, n, czero, cone, vsl, ldvsl )
484 IF( irows.GT.1 ) THEN
485 CALL zlacpy( 'L', irows-1, irows-1, b( ilo+1, ilo ), ldb,
486 $ vsl( ilo+1, ilo ), ldvsl )
487 END IF
488 CALL zungqr( irows, irows, irows, vsl( ilo, ilo ), ldvsl,
489 $ work( itau ), work( iwrk ), lwork+1-iwrk, ierr )
490 END IF
491*
492* Initialize VSR
493*
494 IF( ilvsr )
495 $ CALL zlaset( 'Full', n, n, czero, cone, vsr, ldvsr )
496*
497* Reduce to generalized Hessenberg form
498*
499 CALL zgghd3( jobvsl, jobvsr, n, ilo, ihi, a, lda, b, ldb, vsl,
500 $ ldvsl, vsr, ldvsr, work( iwrk ), lwork+1-iwrk, ierr )
501*
502 sdim = 0
503*
504* Perform QZ algorithm, computing Schur vectors if desired
505*
506 iwrk = itau
507 CALL zlaqz0( 'S', jobvsl, jobvsr, n, ilo, ihi, a, lda, b, ldb,
508 $ alpha, beta, vsl, ldvsl, vsr, ldvsr, work( iwrk ),
509 $ lwork+1-iwrk, rwork( irwrk ), 0, ierr )
510 IF( ierr.NE.0 ) THEN
511 IF( ierr.GT.0 .AND. ierr.LE.n ) THEN
512 info = ierr
513 ELSE IF( ierr.GT.n .AND. ierr.LE.2*n ) THEN
514 info = ierr - n
515 ELSE
516 info = n + 1
517 END IF
518 GO TO 30
519 END IF
520*
521* Sort eigenvalues ALPHA/BETA if desired
522*
523 IF( wantst ) THEN
524*
525* Undo scaling on eigenvalues before selecting
526*
527 IF( ilascl )
528 $ CALL zlascl( 'G', 0, 0, anrm, anrmto, n, 1, alpha, n, ierr )
529 IF( ilbscl )
530 $ CALL zlascl( 'G', 0, 0, bnrm, bnrmto, n, 1, beta, n, ierr )
531*
532* Select eigenvalues
533*
534 DO 10 i = 1, n
535 bwork( i ) = selctg( alpha( i ), beta( i ) )
536 10 CONTINUE
537*
538 CALL ztgsen( 0, ilvsl, ilvsr, bwork, n, a, lda, b, ldb, alpha,
539 $ beta, vsl, ldvsl, vsr, ldvsr, sdim, pvsl, pvsr,
540 $ dif, work( iwrk ), lwork-iwrk+1, idum, 1, ierr )
541 IF( ierr.EQ.1 )
542 $ info = n + 3
543*
544 END IF
545*
546* Apply back-permutation to VSL and VSR
547*
548 IF( ilvsl )
549 $ CALL zggbak( 'P', 'L', n, ilo, ihi, rwork( ileft ),
550 $ rwork( iright ), n, vsl, ldvsl, ierr )
551 IF( ilvsr )
552 $ CALL zggbak( 'P', 'R', n, ilo, ihi, rwork( ileft ),
553 $ rwork( iright ), n, vsr, ldvsr, ierr )
554*
555* Undo scaling
556*
557 IF( ilascl ) THEN
558 CALL zlascl( 'U', 0, 0, anrmto, anrm, n, n, a, lda, ierr )
559 CALL zlascl( 'G', 0, 0, anrmto, anrm, n, 1, alpha, n, ierr )
560 END IF
561*
562 IF( ilbscl ) THEN
563 CALL zlascl( 'U', 0, 0, bnrmto, bnrm, n, n, b, ldb, ierr )
564 CALL zlascl( 'G', 0, 0, bnrmto, bnrm, n, 1, beta, n, ierr )
565 END IF
566*
567 IF( wantst ) THEN
568*
569* Check if reordering is correct
570*
571 lastsl = .true.
572 sdim = 0
573 DO 20 i = 1, n
574 cursl = selctg( alpha( i ), beta( i ) )
575 IF( cursl )
576 $ sdim = sdim + 1
577 IF( cursl .AND. .NOT.lastsl )
578 $ info = n + 2
579 lastsl = cursl
580 20 CONTINUE
581*
582 END IF
583*
584 30 CONTINUE
585*
586 work( 1 ) = dcmplx( lwkopt )
587*
588 RETURN
589*
590* End of ZGGES3
591*
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:69
subroutine dlabad(SMALL, LARGE)
DLABAD
Definition: dlabad.f:74
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
subroutine zggbal(JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE, WORK, INFO)
ZGGBAL
Definition: zggbal.f:177
subroutine zggbak(JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V, LDV, INFO)
ZGGBAK
Definition: zggbak.f:148
double precision function zlange(NORM, M, N, A, LDA, WORK)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: zlange.f:115
recursive subroutine zlaqz0(WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, LDB, ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, REC, INFO)
ZLAQZ0
Definition: zlaqz0.f:284
subroutine zlascl(TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO)
ZLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition: zlascl.f:143
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
subroutine zlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: zlaset.f:106
subroutine ztgsen(IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB, ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO)
ZTGSEN
Definition: ztgsen.f:433
subroutine zungqr(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
ZUNGQR
Definition: zungqr.f:128
subroutine zgghd3(COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ, Z, LDZ, WORK, LWORK, INFO)
ZGGHD3
Definition: zgghd3.f:227
subroutine zunmqr(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
ZUNMQR
Definition: zunmqr.f:167
subroutine zgeqrf(M, N, A, LDA, TAU, WORK, LWORK, INFO)
ZGEQRF VARIANT: left-looking Level 3 BLAS of the algorithm.
Definition: zgeqrf.f:152
Here is the call graph for this function:
Here is the caller graph for this function: