LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ claev2()

subroutine claev2 ( complex  a,
complex  b,
complex  c,
real  rt1,
real  rt2,
real  cs1,
complex  sn1 
)

CLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.

Download CLAEV2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix
    [  A         B  ]
    [  CONJG(B)  C  ].
 On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
 eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
 eigenvector for RT1, giving the decomposition

 [ CS1  CONJG(SN1) ] [    A     B ] [ CS1 -CONJG(SN1) ] = [ RT1  0  ]
 [-SN1     CS1     ] [ CONJG(B) C ] [ SN1     CS1     ]   [  0  RT2 ].
Parameters
[in]A
          A is COMPLEX
         The (1,1) element of the 2-by-2 matrix.
[in]B
          B is COMPLEX
         The (1,2) element and the conjugate of the (2,1) element of
         the 2-by-2 matrix.
[in]C
          C is COMPLEX
         The (2,2) element of the 2-by-2 matrix.
[out]RT1
          RT1 is REAL
         The eigenvalue of larger absolute value.
[out]RT2
          RT2 is REAL
         The eigenvalue of smaller absolute value.
[out]CS1
          CS1 is REAL
[out]SN1
          SN1 is COMPLEX
         The vector (CS1, SN1) is a unit right eigenvector for RT1.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  RT1 is accurate to a few ulps barring over/underflow.

  RT2 may be inaccurate if there is massive cancellation in the
  determinant A*C-B*B; higher precision or correctly rounded or
  correctly truncated arithmetic would be needed to compute RT2
  accurately in all cases.

  CS1 and SN1 are accurate to a few ulps barring over/underflow.

  Overflow is possible only if RT1 is within a factor of 5 of overflow.
  Underflow is harmless if the input data is 0 or exceeds
     underflow_threshold / macheps.

Definition at line 120 of file claev2.f.

121*
122* -- LAPACK auxiliary routine --
123* -- LAPACK is a software package provided by Univ. of Tennessee, --
124* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
125*
126* .. Scalar Arguments ..
127 REAL CS1, RT1, RT2
128 COMPLEX A, B, C, SN1
129* ..
130*
131* =====================================================================
132*
133* .. Parameters ..
134 REAL ZERO
135 parameter( zero = 0.0e0 )
136 REAL ONE
137 parameter( one = 1.0e0 )
138* ..
139* .. Local Scalars ..
140 REAL T
141 COMPLEX W
142* ..
143* .. External Subroutines ..
144 EXTERNAL slaev2
145* ..
146* .. Intrinsic Functions ..
147 INTRINSIC abs, conjg, real
148* ..
149* .. Executable Statements ..
150*
151 IF( abs( b ).EQ.zero ) THEN
152 w = one
153 ELSE
154 w = conjg( b ) / abs( b )
155 END IF
156 CALL slaev2( real( a ), abs( b ), real( c ), rt1, rt2, cs1, t )
157 sn1 = w*t
158 RETURN
159*
160* End of CLAEV2
161*
subroutine slaev2(a, b, c, rt1, rt2, cs1, sn1)
SLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
Definition slaev2.f:120
Here is the call graph for this function: