LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sgbt01()

subroutine sgbt01 ( integer  m,
integer  n,
integer  kl,
integer  ku,
real, dimension( lda, * )  a,
integer  lda,
real, dimension( ldafac, * )  afac,
integer  ldafac,
integer, dimension( * )  ipiv,
real, dimension( * )  work,
real  resid 
)

SGBT01

Purpose:
 SGBT01 reconstructs a band matrix A from its L*U factorization and
 computes the residual:
    norm(L*U - A) / ( N * norm(A) * EPS ),
 where EPS is the machine epsilon.

 The expression L*U - A is computed one column at a time, so A and
 AFAC are not modified.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]KL
          KL is INTEGER
          The number of subdiagonals within the band of A.  KL >= 0.
[in]KU
          KU is INTEGER
          The number of superdiagonals within the band of A.  KU >= 0.
[in,out]A
          A is REAL array, dimension (LDA,N)
          The original matrix A in band storage, stored in rows 1 to
          KL+KU+1.
[in]LDA
          LDA is INTEGER.
          The leading dimension of the array A.  LDA >= max(1,KL+KU+1).
[in]AFAC
          AFAC is REAL array, dimension (LDAFAC,N)
          The factored form of the matrix A.  AFAC contains the banded
          factors L and U from the L*U factorization, as computed by
          SGBTRF.  U is stored as an upper triangular band matrix with
          KL+KU superdiagonals in rows 1 to KL+KU+1, and the
          multipliers used during the factorization are stored in rows
          KL+KU+2 to 2*KL+KU+1.  See SGBTRF for further details.
[in]LDAFAC
          LDAFAC is INTEGER
          The leading dimension of the array AFAC.
          LDAFAC >= max(1,2*KL*KU+1).
[in]IPIV
          IPIV is INTEGER array, dimension (min(M,N))
          The pivot indices from SGBTRF.
[out]WORK
          WORK is REAL array, dimension (2*KL+KU+1)
[out]RESID
          RESID is REAL
          norm(L*U - A) / ( N * norm(A) * EPS )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 124 of file sgbt01.f.

126*
127* -- LAPACK test routine --
128* -- LAPACK is a software package provided by Univ. of Tennessee, --
129* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
130*
131* .. Scalar Arguments ..
132 INTEGER KL, KU, LDA, LDAFAC, M, N
133 REAL RESID
134* ..
135* .. Array Arguments ..
136 INTEGER IPIV( * )
137 REAL A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
138* ..
139*
140* =====================================================================
141*
142* .. Parameters ..
143 REAL ZERO, ONE
144 parameter( zero = 0.0e+0, one = 1.0e+0 )
145* ..
146* .. Local Scalars ..
147 INTEGER I, I1, I2, IL, IP, IW, J, JL, JU, JUA, KD, LENJ
148 REAL ANORM, EPS, T
149* ..
150* .. External Functions ..
151 REAL SASUM, SLAMCH
152 EXTERNAL sasum, slamch
153* ..
154* .. External Subroutines ..
155 EXTERNAL saxpy, scopy
156* ..
157* .. Intrinsic Functions ..
158 INTRINSIC max, min, real
159* ..
160* .. Executable Statements ..
161*
162* Quick exit if M = 0 or N = 0.
163*
164 resid = zero
165 IF( m.LE.0 .OR. n.LE.0 )
166 $ RETURN
167*
168* Determine EPS and the norm of A.
169*
170 eps = slamch( 'Epsilon' )
171 kd = ku + 1
172 anorm = zero
173 DO 10 j = 1, n
174 i1 = max( kd+1-j, 1 )
175 i2 = min( kd+m-j, kl+kd )
176 IF( i2.GE.i1 )
177 $ anorm = max( anorm, sasum( i2-i1+1, a( i1, j ), 1 ) )
178 10 CONTINUE
179*
180* Compute one column at a time of L*U - A.
181*
182 kd = kl + ku + 1
183 DO 40 j = 1, n
184*
185* Copy the J-th column of U to WORK.
186*
187 ju = min( kl+ku, j-1 )
188 jl = min( kl, m-j )
189 lenj = min( m, j ) - j + ju + 1
190 IF( lenj.GT.0 ) THEN
191 CALL scopy( lenj, afac( kd-ju, j ), 1, work, 1 )
192 DO 20 i = lenj + 1, ju + jl + 1
193 work( i ) = zero
194 20 CONTINUE
195*
196* Multiply by the unit lower triangular matrix L. Note that L
197* is stored as a product of transformations and permutations.
198*
199 DO 30 i = min( m-1, j ), j - ju, -1
200 il = min( kl, m-i )
201 IF( il.GT.0 ) THEN
202 iw = i - j + ju + 1
203 t = work( iw )
204 CALL saxpy( il, t, afac( kd+1, i ), 1, work( iw+1 ),
205 $ 1 )
206 ip = ipiv( i )
207 IF( i.NE.ip ) THEN
208 ip = ip - j + ju + 1
209 work( iw ) = work( ip )
210 work( ip ) = t
211 END IF
212 END IF
213 30 CONTINUE
214*
215* Subtract the corresponding column of A.
216*
217 jua = min( ju, ku )
218 IF( jua+jl+1.GT.0 )
219 $ CALL saxpy( jua+jl+1, -one, a( ku+1-jua, j ), 1,
220 $ work( ju+1-jua ), 1 )
221*
222* Compute the 1-norm of the column.
223*
224 resid = max( resid, sasum( ju+jl+1, work, 1 ) )
225 END IF
226 40 CONTINUE
227*
228* Compute norm(L*U - A) / ( N * norm(A) * EPS )
229*
230 IF( anorm.LE.zero ) THEN
231 IF( resid.NE.zero )
232 $ resid = one / eps
233 ELSE
234 resid = ( ( resid / real( n ) ) / anorm ) / eps
235 END IF
236*
237 RETURN
238*
239* End of SGBT01
240*
real function sasum(n, sx, incx)
SASUM
Definition sasum.f:72
subroutine saxpy(n, sa, sx, incx, sy, incy)
SAXPY
Definition saxpy.f:89
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
Here is the call graph for this function:
Here is the caller graph for this function: