LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ csytrf_aa_2stage()

subroutine csytrf_aa_2stage ( character  UPLO,
integer  N,
complex, dimension( lda, * )  A,
integer  LDA,
complex, dimension( * )  TB,
integer  LTB,
integer, dimension( * )  IPIV,
integer, dimension( * )  IPIV2,
complex, dimension( * )  WORK,
integer  LWORK,
integer  INFO 
)

CSYTRF_AA_2STAGE

Download CSYTRF_AA_2STAGE + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CSYTRF_AA_2STAGE computes the factorization of a complex symmetric matrix A
 using the Aasen's algorithm.  The form of the factorization is

    A = U**T*T*U  or  A = L*T*L**T

 where U (or L) is a product of permutation and unit upper (lower)
 triangular matrices, and T is a complex symmetric band matrix with the
 bandwidth of NB (NB is internally selected and stored in TB( 1 ), and T is 
 LU factorized with partial pivoting).

 This is the blocked version of the algorithm, calling Level 3 BLAS.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in,out]A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the hermitian matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.

          On exit, L is stored below (or above) the subdiaonal blocks,
          when UPLO  is 'L' (or 'U').
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[out]TB
          TB is COMPLEX array, dimension (LTB)
          On exit, details of the LU factorization of the band matrix.
[in]LTB
          LTB is INTEGER
          The size of the array TB. LTB >= 4*N, internally
          used to select NB such that LTB >= (3*NB+1)*N.

          If LTB = -1, then a workspace query is assumed; the
          routine only calculates the optimal size of LTB, 
          returns this value as the first entry of TB, and
          no error message related to LTB is issued by XERBLA.
[out]IPIV
          IPIV is INTEGER array, dimension (N)
          On exit, it contains the details of the interchanges, i.e.,
          the row and column k of A were interchanged with the
          row and column IPIV(k).
[out]IPIV2
          IPIV2 is INTEGER array, dimension (N)
          On exit, it contains the details of the interchanges, i.e.,
          the row and column k of T were interchanged with the
          row and column IPIV(k).
[out]WORK
          WORK is COMPLEX workspace of size LWORK
[in]LWORK
          LWORK is INTEGER
          The size of WORK. LWORK >= N, internally used to select NB
          such that LWORK >= N*NB.

          If LWORK = -1, then a workspace query is assumed; the
          routine only calculates the optimal size of the WORK array,
          returns this value as the first entry of the WORK array, and
          no error message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, band LU factorization failed on i-th column
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 158 of file csytrf_aa_2stage.f.

160*
161* -- LAPACK computational routine --
162* -- LAPACK is a software package provided by Univ. of Tennessee, --
163* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
164*
165 IMPLICIT NONE
166*
167* .. Scalar Arguments ..
168 CHARACTER UPLO
169 INTEGER N, LDA, LTB, LWORK, INFO
170* ..
171* .. Array Arguments ..
172 INTEGER IPIV( * ), IPIV2( * )
173 COMPLEX A( LDA, * ), TB( * ), WORK( * )
174* ..
175*
176* =====================================================================
177* .. Parameters ..
178 COMPLEX CZERO, CONE
179 parameter( czero = ( 0.0e+0, 0.0e+0 ),
180 $ cone = ( 1.0e+0, 0.0e+0 ) )
181*
182* .. Local Scalars ..
183 LOGICAL UPPER, TQUERY, WQUERY
184 INTEGER I, J, K, I1, I2, TD
185 INTEGER LDTB, NB, KB, JB, NT, IINFO
186 COMPLEX PIV
187* ..
188* .. External Functions ..
189 LOGICAL LSAME
190 INTEGER ILAENV
191 EXTERNAL lsame, ilaenv
192* ..
193* .. External Subroutines ..
194 EXTERNAL ccopy, cgbtrf, cgemm, cgetrf, clacpy,
196* ..
197* .. Intrinsic Functions ..
198 INTRINSIC min, max
199* ..
200* .. Executable Statements ..
201*
202* Test the input parameters.
203*
204 info = 0
205 upper = lsame( uplo, 'U' )
206 wquery = ( lwork.EQ.-1 )
207 tquery = ( ltb.EQ.-1 )
208 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
209 info = -1
210 ELSE IF( n.LT.0 ) THEN
211 info = -2
212 ELSE IF( lda.LT.max( 1, n ) ) THEN
213 info = -4
214 ELSE IF ( ltb .LT. 4*n .AND. .NOT.tquery ) THEN
215 info = -6
216 ELSE IF ( lwork .LT. n .AND. .NOT.wquery ) THEN
217 info = -10
218 END IF
219*
220 IF( info.NE.0 ) THEN
221 CALL xerbla( 'CSYTRF_AA_2STAGE', -info )
222 RETURN
223 END IF
224*
225* Answer the query
226*
227 nb = ilaenv( 1, 'CSYTRF_AA_2STAGE', uplo, n, -1, -1, -1 )
228 IF( info.EQ.0 ) THEN
229 IF( tquery ) THEN
230 tb( 1 ) = (3*nb+1)*n
231 END IF
232 IF( wquery ) THEN
233 work( 1 ) = n*nb
234 END IF
235 END IF
236 IF( tquery .OR. wquery ) THEN
237 RETURN
238 END IF
239*
240* Quick return
241*
242 IF ( n.EQ.0 ) THEN
243 RETURN
244 ENDIF
245*
246* Determine the number of the block size
247*
248 ldtb = ltb/n
249 IF( ldtb .LT. 3*nb+1 ) THEN
250 nb = (ldtb-1)/3
251 END IF
252 IF( lwork .LT. nb*n ) THEN
253 nb = lwork/n
254 END IF
255*
256* Determine the number of the block columns
257*
258 nt = (n+nb-1)/nb
259 td = 2*nb
260 kb = min(nb, n)
261*
262* Initialize vectors/matrices
263*
264 DO j = 1, kb
265 ipiv( j ) = j
266 END DO
267*
268* Save NB
269*
270 tb( 1 ) = nb
271*
272 IF( upper ) THEN
273*
274* .....................................................
275* Factorize A as U**T*D*U using the upper triangle of A
276* .....................................................
277*
278 DO j = 0, nt-1
279*
280* Generate Jth column of W and H
281*
282 kb = min(nb, n-j*nb)
283 DO i = 1, j-1
284 IF( i.EQ.1 ) THEN
285* H(I,J) = T(I,I)*U(I,J) + T(I+1,I)*U(I+1,J)
286 IF( i .EQ. (j-1) ) THEN
287 jb = nb+kb
288 ELSE
289 jb = 2*nb
290 END IF
291 CALL cgemm( 'NoTranspose', 'NoTranspose',
292 $ nb, kb, jb,
293 $ cone, tb( td+1 + (i*nb)*ldtb ), ldtb-1,
294 $ a( (i-1)*nb+1, j*nb+1 ), lda,
295 $ czero, work( i*nb+1 ), n )
296 ELSE
297* H(I,J) = T(I,I-1)*U(I-1,J) + T(I,I)*U(I,J) + T(I,I+1)*U(I+1,J)
298 IF( i .EQ. j-1) THEN
299 jb = 2*nb+kb
300 ELSE
301 jb = 3*nb
302 END IF
303 CALL cgemm( 'NoTranspose', 'NoTranspose',
304 $ nb, kb, jb,
305 $ cone, tb( td+nb+1 + ((i-1)*nb)*ldtb ),
306 $ ldtb-1,
307 $ a( (i-2)*nb+1, j*nb+1 ), lda,
308 $ czero, work( i*nb+1 ), n )
309 END IF
310 END DO
311*
312* Compute T(J,J)
313*
314 CALL clacpy( 'Upper', kb, kb, a( j*nb+1, j*nb+1 ), lda,
315 $ tb( td+1 + (j*nb)*ldtb ), ldtb-1 )
316 IF( j.GT.1 ) THEN
317* T(J,J) = U(1:J,J)'*H(1:J)
318 CALL cgemm( 'Transpose', 'NoTranspose',
319 $ kb, kb, (j-1)*nb,
320 $ -cone, a( 1, j*nb+1 ), lda,
321 $ work( nb+1 ), n,
322 $ cone, tb( td+1 + (j*nb)*ldtb ), ldtb-1 )
323* T(J,J) += U(J,J)'*T(J,J-1)*U(J-1,J)
324 CALL cgemm( 'Transpose', 'NoTranspose',
325 $ kb, nb, kb,
326 $ cone, a( (j-1)*nb+1, j*nb+1 ), lda,
327 $ tb( td+nb+1 + ((j-1)*nb)*ldtb ), ldtb-1,
328 $ czero, work( 1 ), n )
329 CALL cgemm( 'NoTranspose', 'NoTranspose',
330 $ kb, kb, nb,
331 $ -cone, work( 1 ), n,
332 $ a( (j-2)*nb+1, j*nb+1 ), lda,
333 $ cone, tb( td+1 + (j*nb)*ldtb ), ldtb-1 )
334 END IF
335*
336* Expand T(J,J) into full format
337*
338 DO i = 1, kb
339 DO k = i+1, kb
340 tb( td+(k-i)+1 + (j*nb+i-1)*ldtb )
341 $ = tb( td-(k-(i+1)) + (j*nb+k-1)*ldtb )
342 END DO
343 END DO
344 IF( j.GT.0 ) THEN
345c CALL CHEGST( 1, 'Upper', KB,
346c $ TB( TD+1 + (J*NB)*LDTB ), LDTB-1,
347c $ A( (J-1)*NB+1, J*NB+1 ), LDA, IINFO )
348 CALL ctrsm( 'L', 'U', 'T', 'N', kb, kb, cone,
349 $ a( (j-1)*nb+1, j*nb+1 ), lda,
350 $ tb( td+1 + (j*nb)*ldtb ), ldtb-1 )
351 CALL ctrsm( 'R', 'U', 'N', 'N', kb, kb, cone,
352 $ a( (j-1)*nb+1, j*nb+1 ), lda,
353 $ tb( td+1 + (j*nb)*ldtb ), ldtb-1 )
354 END IF
355*
356 IF( j.LT.nt-1 ) THEN
357 IF( j.GT.0 ) THEN
358*
359* Compute H(J,J)
360*
361 IF( j.EQ.1 ) THEN
362 CALL cgemm( 'NoTranspose', 'NoTranspose',
363 $ kb, kb, kb,
364 $ cone, tb( td+1 + (j*nb)*ldtb ), ldtb-1,
365 $ a( (j-1)*nb+1, j*nb+1 ), lda,
366 $ czero, work( j*nb+1 ), n )
367 ELSE
368 CALL cgemm( 'NoTranspose', 'NoTranspose',
369 $ kb, kb, nb+kb,
370 $ cone, tb( td+nb+1 + ((j-1)*nb)*ldtb ),
371 $ ldtb-1,
372 $ a( (j-2)*nb+1, j*nb+1 ), lda,
373 $ czero, work( j*nb+1 ), n )
374 END IF
375*
376* Update with the previous column
377*
378 CALL cgemm( 'Transpose', 'NoTranspose',
379 $ nb, n-(j+1)*nb, j*nb,
380 $ -cone, work( nb+1 ), n,
381 $ a( 1, (j+1)*nb+1 ), lda,
382 $ cone, a( j*nb+1, (j+1)*nb+1 ), lda )
383 END IF
384*
385* Copy panel to workspace to call CGETRF
386*
387 DO k = 1, nb
388 CALL ccopy( n-(j+1)*nb,
389 $ a( j*nb+k, (j+1)*nb+1 ), lda,
390 $ work( 1+(k-1)*n ), 1 )
391 END DO
392*
393* Factorize panel
394*
395 CALL cgetrf( n-(j+1)*nb, nb,
396 $ work, n,
397 $ ipiv( (j+1)*nb+1 ), iinfo )
398c IF (IINFO.NE.0 .AND. INFO.EQ.0) THEN
399c INFO = IINFO+(J+1)*NB
400c END IF
401*
402* Copy panel back
403*
404 DO k = 1, nb
405 CALL ccopy( n-(j+1)*nb,
406 $ work( 1+(k-1)*n ), 1,
407 $ a( j*nb+k, (j+1)*nb+1 ), lda )
408 END DO
409*
410* Compute T(J+1, J), zero out for GEMM update
411*
412 kb = min(nb, n-(j+1)*nb)
413 CALL claset( 'Full', kb, nb, czero, czero,
414 $ tb( td+nb+1 + (j*nb)*ldtb), ldtb-1 )
415 CALL clacpy( 'Upper', kb, nb,
416 $ work, n,
417 $ tb( td+nb+1 + (j*nb)*ldtb ), ldtb-1 )
418 IF( j.GT.0 ) THEN
419 CALL ctrsm( 'R', 'U', 'N', 'U', kb, nb, cone,
420 $ a( (j-1)*nb+1, j*nb+1 ), lda,
421 $ tb( td+nb+1 + (j*nb)*ldtb ), ldtb-1 )
422 END IF
423*
424* Copy T(J,J+1) into T(J+1, J), both upper/lower for GEMM
425* updates
426*
427 DO k = 1, nb
428 DO i = 1, kb
429 tb( td-nb+k-i+1 + (j*nb+nb+i-1)*ldtb )
430 $ = tb( td+nb+i-k+1 + (j*nb+k-1)*ldtb )
431 END DO
432 END DO
433 CALL claset( 'Lower', kb, nb, czero, cone,
434 $ a( j*nb+1, (j+1)*nb+1), lda )
435*
436* Apply pivots to trailing submatrix of A
437*
438 DO k = 1, kb
439* > Adjust ipiv
440 ipiv( (j+1)*nb+k ) = ipiv( (j+1)*nb+k ) + (j+1)*nb
441*
442 i1 = (j+1)*nb+k
443 i2 = ipiv( (j+1)*nb+k )
444 IF( i1.NE.i2 ) THEN
445* > Apply pivots to previous columns of L
446 CALL cswap( k-1, a( (j+1)*nb+1, i1 ), 1,
447 $ a( (j+1)*nb+1, i2 ), 1 )
448* > Swap A(I1+1:M, I1) with A(I2, I1+1:M)
449 IF( i2.GT.(i1+1) )
450 $ CALL cswap( i2-i1-1, a( i1, i1+1 ), lda,
451 $ a( i1+1, i2 ), 1 )
452* > Swap A(I2+1:M, I1) with A(I2+1:M, I2)
453 IF( i2.LT.n )
454 $ CALL cswap( n-i2, a( i1, i2+1 ), lda,
455 $ a( i2, i2+1 ), lda )
456* > Swap A(I1, I1) with A(I2, I2)
457 piv = a( i1, i1 )
458 a( i1, i1 ) = a( i2, i2 )
459 a( i2, i2 ) = piv
460* > Apply pivots to previous columns of L
461 IF( j.GT.0 ) THEN
462 CALL cswap( j*nb, a( 1, i1 ), 1,
463 $ a( 1, i2 ), 1 )
464 END IF
465 ENDIF
466 END DO
467 END IF
468 END DO
469 ELSE
470*
471* .....................................................
472* Factorize A as L*D*L**T using the lower triangle of A
473* .....................................................
474*
475 DO j = 0, nt-1
476*
477* Generate Jth column of W and H
478*
479 kb = min(nb, n-j*nb)
480 DO i = 1, j-1
481 IF( i.EQ.1 ) THEN
482* H(I,J) = T(I,I)*L(J,I)' + T(I+1,I)'*L(J,I+1)'
483 IF( i .EQ. (j-1) ) THEN
484 jb = nb+kb
485 ELSE
486 jb = 2*nb
487 END IF
488 CALL cgemm( 'NoTranspose', 'Transpose',
489 $ nb, kb, jb,
490 $ cone, tb( td+1 + (i*nb)*ldtb ), ldtb-1,
491 $ a( j*nb+1, (i-1)*nb+1 ), lda,
492 $ czero, work( i*nb+1 ), n )
493 ELSE
494* H(I,J) = T(I,I-1)*L(J,I-1)' + T(I,I)*L(J,I)' + T(I,I+1)*L(J,I+1)'
495 IF( i .EQ. (j-1) ) THEN
496 jb = 2*nb+kb
497 ELSE
498 jb = 3*nb
499 END IF
500 CALL cgemm( 'NoTranspose', 'Transpose',
501 $ nb, kb, jb,
502 $ cone, tb( td+nb+1 + ((i-1)*nb)*ldtb ),
503 $ ldtb-1,
504 $ a( j*nb+1, (i-2)*nb+1 ), lda,
505 $ czero, work( i*nb+1 ), n )
506 END IF
507 END DO
508*
509* Compute T(J,J)
510*
511 CALL clacpy( 'Lower', kb, kb, a( j*nb+1, j*nb+1 ), lda,
512 $ tb( td+1 + (j*nb)*ldtb ), ldtb-1 )
513 IF( j.GT.1 ) THEN
514* T(J,J) = L(J,1:J)*H(1:J)
515 CALL cgemm( 'NoTranspose', 'NoTranspose',
516 $ kb, kb, (j-1)*nb,
517 $ -cone, a( j*nb+1, 1 ), lda,
518 $ work( nb+1 ), n,
519 $ cone, tb( td+1 + (j*nb)*ldtb ), ldtb-1 )
520* T(J,J) += L(J,J)*T(J,J-1)*L(J,J-1)'
521 CALL cgemm( 'NoTranspose', 'NoTranspose',
522 $ kb, nb, kb,
523 $ cone, a( j*nb+1, (j-1)*nb+1 ), lda,
524 $ tb( td+nb+1 + ((j-1)*nb)*ldtb ), ldtb-1,
525 $ czero, work( 1 ), n )
526 CALL cgemm( 'NoTranspose', 'Transpose',
527 $ kb, kb, nb,
528 $ -cone, work( 1 ), n,
529 $ a( j*nb+1, (j-2)*nb+1 ), lda,
530 $ cone, tb( td+1 + (j*nb)*ldtb ), ldtb-1 )
531 END IF
532*
533* Expand T(J,J) into full format
534*
535 DO i = 1, kb
536 DO k = i+1, kb
537 tb( td-(k-(i+1)) + (j*nb+k-1)*ldtb )
538 $ = tb( td+(k-i)+1 + (j*nb+i-1)*ldtb )
539 END DO
540 END DO
541 IF( j.GT.0 ) THEN
542c CALL CHEGST( 1, 'Lower', KB,
543c $ TB( TD+1 + (J*NB)*LDTB ), LDTB-1,
544c $ A( J*NB+1, (J-1)*NB+1 ), LDA, IINFO )
545 CALL ctrsm( 'L', 'L', 'N', 'N', kb, kb, cone,
546 $ a( j*nb+1, (j-1)*nb+1 ), lda,
547 $ tb( td+1 + (j*nb)*ldtb ), ldtb-1 )
548 CALL ctrsm( 'R', 'L', 'T', 'N', kb, kb, cone,
549 $ a( j*nb+1, (j-1)*nb+1 ), lda,
550 $ tb( td+1 + (j*nb)*ldtb ), ldtb-1 )
551 END IF
552*
553* Symmetrize T(J,J)
554*
555 DO i = 1, kb
556 DO k = i+1, kb
557 tb( td-(k-(i+1)) + (j*nb+k-1)*ldtb )
558 $ = tb( td+(k-i)+1 + (j*nb+i-1)*ldtb )
559 END DO
560 END DO
561*
562 IF( j.LT.nt-1 ) THEN
563 IF( j.GT.0 ) THEN
564*
565* Compute H(J,J)
566*
567 IF( j.EQ.1 ) THEN
568 CALL cgemm( 'NoTranspose', 'Transpose',
569 $ kb, kb, kb,
570 $ cone, tb( td+1 + (j*nb)*ldtb ), ldtb-1,
571 $ a( j*nb+1, (j-1)*nb+1 ), lda,
572 $ czero, work( j*nb+1 ), n )
573 ELSE
574 CALL cgemm( 'NoTranspose', 'Transpose',
575 $ kb, kb, nb+kb,
576 $ cone, tb( td+nb+1 + ((j-1)*nb)*ldtb ),
577 $ ldtb-1,
578 $ a( j*nb+1, (j-2)*nb+1 ), lda,
579 $ czero, work( j*nb+1 ), n )
580 END IF
581*
582* Update with the previous column
583*
584 CALL cgemm( 'NoTranspose', 'NoTranspose',
585 $ n-(j+1)*nb, nb, j*nb,
586 $ -cone, a( (j+1)*nb+1, 1 ), lda,
587 $ work( nb+1 ), n,
588 $ cone, a( (j+1)*nb+1, j*nb+1 ), lda )
589 END IF
590*
591* Factorize panel
592*
593 CALL cgetrf( n-(j+1)*nb, nb,
594 $ a( (j+1)*nb+1, j*nb+1 ), lda,
595 $ ipiv( (j+1)*nb+1 ), iinfo )
596c IF (IINFO.NE.0 .AND. INFO.EQ.0) THEN
597c INFO = IINFO+(J+1)*NB
598c END IF
599*
600* Compute T(J+1, J), zero out for GEMM update
601*
602 kb = min(nb, n-(j+1)*nb)
603 CALL claset( 'Full', kb, nb, czero, czero,
604 $ tb( td+nb+1 + (j*nb)*ldtb), ldtb-1 )
605 CALL clacpy( 'Upper', kb, nb,
606 $ a( (j+1)*nb+1, j*nb+1 ), lda,
607 $ tb( td+nb+1 + (j*nb)*ldtb ), ldtb-1 )
608 IF( j.GT.0 ) THEN
609 CALL ctrsm( 'R', 'L', 'T', 'U', kb, nb, cone,
610 $ a( j*nb+1, (j-1)*nb+1 ), lda,
611 $ tb( td+nb+1 + (j*nb)*ldtb ), ldtb-1 )
612 END IF
613*
614* Copy T(J+1,J) into T(J, J+1), both upper/lower for GEMM
615* updates
616*
617 DO k = 1, nb
618 DO i = 1, kb
619 tb( td-nb+k-i+1 + (j*nb+nb+i-1)*ldtb ) =
620 $ tb( td+nb+i-k+1 + (j*nb+k-1)*ldtb )
621 END DO
622 END DO
623 CALL claset( 'Upper', kb, nb, czero, cone,
624 $ a( (j+1)*nb+1, j*nb+1 ), lda )
625*
626* Apply pivots to trailing submatrix of A
627*
628 DO k = 1, kb
629* > Adjust ipiv
630 ipiv( (j+1)*nb+k ) = ipiv( (j+1)*nb+k ) + (j+1)*nb
631*
632 i1 = (j+1)*nb+k
633 i2 = ipiv( (j+1)*nb+k )
634 IF( i1.NE.i2 ) THEN
635* > Apply pivots to previous columns of L
636 CALL cswap( k-1, a( i1, (j+1)*nb+1 ), lda,
637 $ a( i2, (j+1)*nb+1 ), lda )
638* > Swap A(I1+1:M, I1) with A(I2, I1+1:M)
639 IF( i2.GT.(i1+1) )
640 $ CALL cswap( i2-i1-1, a( i1+1, i1 ), 1,
641 $ a( i2, i1+1 ), lda )
642* > Swap A(I2+1:M, I1) with A(I2+1:M, I2)
643 IF( i2.LT.n )
644 $ CALL cswap( n-i2, a( i2+1, i1 ), 1,
645 $ a( i2+1, i2 ), 1 )
646* > Swap A(I1, I1) with A(I2, I2)
647 piv = a( i1, i1 )
648 a( i1, i1 ) = a( i2, i2 )
649 a( i2, i2 ) = piv
650* > Apply pivots to previous columns of L
651 IF( j.GT.0 ) THEN
652 CALL cswap( j*nb, a( i1, 1 ), lda,
653 $ a( i2, 1 ), lda )
654 END IF
655 ENDIF
656 END DO
657*
658* Apply pivots to previous columns of L
659*
660c CALL CLASWP( J*NB, A( 1, 1 ), LDA,
661c $ (J+1)*NB+1, (J+1)*NB+KB, IPIV, 1 )
662 END IF
663 END DO
664 END IF
665*
666* Factor the band matrix
667 CALL cgbtrf( n, n, nb, nb, tb, ldtb, ipiv2, info )
668*
669 RETURN
670*
671* End of CSYTRF_AA_2STAGE
672*
integer function ilaenv(ISPEC, NAME, OPTS, N1, N2, N3, N4)
ILAENV
Definition: ilaenv.f:162
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
subroutine ccopy(N, CX, INCX, CY, INCY)
CCOPY
Definition: ccopy.f:81
subroutine cswap(N, CX, INCX, CY, INCY)
CSWAP
Definition: cswap.f:81
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:187
subroutine ctrsm(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
CTRSM
Definition: ctrsm.f:180
subroutine cgbtrf(M, N, KL, KU, AB, LDAB, IPIV, INFO)
CGBTRF
Definition: cgbtrf.f:144
subroutine cgetrf(M, N, A, LDA, IPIV, INFO)
CGETRF
Definition: cgetrf.f:108
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: claset.f:106
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
Here is the call graph for this function:
Here is the caller graph for this function: