LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dtpt05 | ( | character | uplo, |
character | trans, | ||
character | diag, | ||
integer | n, | ||
integer | nrhs, | ||
double precision, dimension( * ) | ap, | ||
double precision, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
double precision, dimension( ldx, * ) | x, | ||
integer | ldx, | ||
double precision, dimension( ldxact, * ) | xact, | ||
integer | ldxact, | ||
double precision, dimension( * ) | ferr, | ||
double precision, dimension( * ) | berr, | ||
double precision, dimension( * ) | reslts ) |
DTPT05
!> !> DTPT05 tests the error bounds from iterative refinement for the !> computed solution to a system of equations A*X = B, where A is a !> triangular matrix in packed storage format. !> !> RESLTS(1) = test of the error bound !> = norm(X - XACT) / ( norm(X) * FERR ) !> !> A large value is returned if this ratio is not less than one. !> !> RESLTS(2) = residual from the iterative refinement routine !> = the maximum of BERR / ( (n+1)*EPS + (*) ), where !> (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) !>
[in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the matrix A is upper or lower triangular. !> = 'U': Upper triangular !> = 'L': Lower triangular !> |
[in] | TRANS | !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations. !> = 'N': A * X = B (No transpose) !> = 'T': A'* X = B (Transpose) !> = 'C': A'* X = B (Conjugate transpose = Transpose) !> |
[in] | DIAG | !> DIAG is CHARACTER*1 !> Specifies whether or not the matrix A is unit triangular. !> = 'N': Non-unit triangular !> = 'U': Unit triangular !> |
[in] | N | !> N is INTEGER !> The number of rows of the matrices X, B, and XACT, and the !> order of the matrix A. N >= 0. !> |
[in] | NRHS | !> NRHS is INTEGER !> The number of columns of the matrices X, B, and XACT. !> NRHS >= 0. !> |
[in] | AP | !> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) !> The upper or lower triangular matrix A, packed columnwise in !> a linear array. The j-th column of A is stored in the array !> AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> If DIAG = 'U', the diagonal elements of A are not referenced !> and are assumed to be 1. !> |
[in] | B | !> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> The right hand side vectors for the system of linear !> equations. !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
[in] | X | !> X is DOUBLE PRECISION array, dimension (LDX,NRHS) !> The computed solution vectors. Each vector is stored as a !> column of the matrix X. !> |
[in] | LDX | !> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !> |
[in] | XACT | !> XACT is DOUBLE PRECISION array, dimension (LDX,NRHS) !> The exact solution vectors. Each vector is stored as a !> column of the matrix XACT. !> |
[in] | LDXACT | !> LDXACT is INTEGER !> The leading dimension of the array XACT. LDXACT >= max(1,N). !> |
[in] | FERR | !> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bounds for each solution vector !> X. If XTRUE is the true solution, FERR bounds the magnitude !> of the largest entry in (X - XTRUE) divided by the magnitude !> of the largest entry in X. !> |
[in] | BERR | !> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector (i.e., the smallest relative change in any entry of A !> or B that makes X an exact solution). !> |
[out] | RESLTS | !> RESLTS is DOUBLE PRECISION array, dimension (2) !> The maximum over the NRHS solution vectors of the ratios: !> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) !> RESLTS(2) = BERR / ( (n+1)*EPS + (*) ) !> |
Definition at line 172 of file dtpt05.f.