LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ dtpt05()

subroutine dtpt05 ( character uplo,
character trans,
character diag,
integer n,
integer nrhs,
double precision, dimension( * ) ap,
double precision, dimension( ldb, * ) b,
integer ldb,
double precision, dimension( ldx, * ) x,
integer ldx,
double precision, dimension( ldxact, * ) xact,
integer ldxact,
double precision, dimension( * ) ferr,
double precision, dimension( * ) berr,
double precision, dimension( * ) reslts )

DTPT05

Purpose:
!> !> DTPT05 tests the error bounds from iterative refinement for the !> computed solution to a system of equations A*X = B, where A is a !> triangular matrix in packed storage format. !> !> RESLTS(1) = test of the error bound !> = norm(X - XACT) / ( norm(X) * FERR ) !> !> A large value is returned if this ratio is not less than one. !> !> RESLTS(2) = residual from the iterative refinement routine !> = the maximum of BERR / ( (n+1)*EPS + (*) ), where !> (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) !>
Parameters
[in]UPLO
!> UPLO is CHARACTER*1 !> Specifies whether the matrix A is upper or lower triangular. !> = 'U': Upper triangular !> = 'L': Lower triangular !>
[in]TRANS
!> TRANS is CHARACTER*1 !> Specifies the form of the system of equations. !> = 'N': A * X = B (No transpose) !> = 'T': A'* X = B (Transpose) !> = 'C': A'* X = B (Conjugate transpose = Transpose) !>
[in]DIAG
!> DIAG is CHARACTER*1 !> Specifies whether or not the matrix A is unit triangular. !> = 'N': Non-unit triangular !> = 'U': Unit triangular !>
[in]N
!> N is INTEGER !> The number of rows of the matrices X, B, and XACT, and the !> order of the matrix A. N >= 0. !>
[in]NRHS
!> NRHS is INTEGER !> The number of columns of the matrices X, B, and XACT. !> NRHS >= 0. !>
[in]AP
!> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) !> The upper or lower triangular matrix A, packed columnwise in !> a linear array. The j-th column of A is stored in the array !> AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> If DIAG = 'U', the diagonal elements of A are not referenced !> and are assumed to be 1. !>
[in]B
!> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> The right hand side vectors for the system of linear !> equations. !>
[in]LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
[in]X
!> X is DOUBLE PRECISION array, dimension (LDX,NRHS) !> The computed solution vectors. Each vector is stored as a !> column of the matrix X. !>
[in]LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !>
[in]XACT
!> XACT is DOUBLE PRECISION array, dimension (LDX,NRHS) !> The exact solution vectors. Each vector is stored as a !> column of the matrix XACT. !>
[in]LDXACT
!> LDXACT is INTEGER !> The leading dimension of the array XACT. LDXACT >= max(1,N). !>
[in]FERR
!> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bounds for each solution vector !> X. If XTRUE is the true solution, FERR bounds the magnitude !> of the largest entry in (X - XTRUE) divided by the magnitude !> of the largest entry in X. !>
[in]BERR
!> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector (i.e., the smallest relative change in any entry of A !> or B that makes X an exact solution). !>
[out]RESLTS
!> RESLTS is DOUBLE PRECISION array, dimension (2) !> The maximum over the NRHS solution vectors of the ratios: !> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) !> RESLTS(2) = BERR / ( (n+1)*EPS + (*) ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 172 of file dtpt05.f.

174*
175* -- LAPACK test routine --
176* -- LAPACK is a software package provided by Univ. of Tennessee, --
177* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
178*
179* .. Scalar Arguments ..
180 CHARACTER DIAG, TRANS, UPLO
181 INTEGER LDB, LDX, LDXACT, N, NRHS
182* ..
183* .. Array Arguments ..
184 DOUBLE PRECISION AP( * ), B( LDB, * ), BERR( * ), FERR( * ),
185 $ RESLTS( * ), X( LDX, * ), XACT( LDXACT, * )
186* ..
187*
188* =====================================================================
189*
190* .. Parameters ..
191 DOUBLE PRECISION ZERO, ONE
192 parameter( zero = 0.0d+0, one = 1.0d+0 )
193* ..
194* .. Local Scalars ..
195 LOGICAL NOTRAN, UNIT, UPPER
196 INTEGER I, IFU, IMAX, J, JC, K
197 DOUBLE PRECISION AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
198* ..
199* .. External Functions ..
200 LOGICAL LSAME
201 INTEGER IDAMAX
202 DOUBLE PRECISION DLAMCH
203 EXTERNAL lsame, idamax, dlamch
204* ..
205* .. Intrinsic Functions ..
206 INTRINSIC abs, max, min
207* ..
208* .. Executable Statements ..
209*
210* Quick exit if N = 0 or NRHS = 0.
211*
212 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
213 reslts( 1 ) = zero
214 reslts( 2 ) = zero
215 RETURN
216 END IF
217*
218 eps = dlamch( 'Epsilon' )
219 unfl = dlamch( 'Safe minimum' )
220 ovfl = one / unfl
221 upper = lsame( uplo, 'U' )
222 notran = lsame( trans, 'N' )
223 unit = lsame( diag, 'U' )
224*
225* Test 1: Compute the maximum of
226* norm(X - XACT) / ( norm(X) * FERR )
227* over all the vectors X and XACT using the infinity-norm.
228*
229 errbnd = zero
230 DO 30 j = 1, nrhs
231 imax = idamax( n, x( 1, j ), 1 )
232 xnorm = max( abs( x( imax, j ) ), unfl )
233 diff = zero
234 DO 10 i = 1, n
235 diff = max( diff, abs( x( i, j )-xact( i, j ) ) )
236 10 CONTINUE
237*
238 IF( xnorm.GT.one ) THEN
239 GO TO 20
240 ELSE IF( diff.LE.ovfl*xnorm ) THEN
241 GO TO 20
242 ELSE
243 errbnd = one / eps
244 GO TO 30
245 END IF
246*
247 20 CONTINUE
248 IF( diff / xnorm.LE.ferr( j ) ) THEN
249 errbnd = max( errbnd, ( diff / xnorm ) / ferr( j ) )
250 ELSE
251 errbnd = one / eps
252 END IF
253 30 CONTINUE
254 reslts( 1 ) = errbnd
255*
256* Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
257* (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
258*
259 ifu = 0
260 IF( unit )
261 $ ifu = 1
262 DO 90 k = 1, nrhs
263 DO 80 i = 1, n
264 tmp = abs( b( i, k ) )
265 IF( upper ) THEN
266 jc = ( ( i-1 )*i ) / 2
267 IF( .NOT.notran ) THEN
268 DO 40 j = 1, i - ifu
269 tmp = tmp + abs( ap( jc+j ) )*abs( x( j, k ) )
270 40 CONTINUE
271 IF( unit )
272 $ tmp = tmp + abs( x( i, k ) )
273 ELSE
274 jc = jc + i
275 IF( unit ) THEN
276 tmp = tmp + abs( x( i, k ) )
277 jc = jc + i
278 END IF
279 DO 50 j = i + ifu, n
280 tmp = tmp + abs( ap( jc ) )*abs( x( j, k ) )
281 jc = jc + j
282 50 CONTINUE
283 END IF
284 ELSE
285 IF( notran ) THEN
286 jc = i
287 DO 60 j = 1, i - ifu
288 tmp = tmp + abs( ap( jc ) )*abs( x( j, k ) )
289 jc = jc + n - j
290 60 CONTINUE
291 IF( unit )
292 $ tmp = tmp + abs( x( i, k ) )
293 ELSE
294 jc = ( i-1 )*( n-i ) + ( i*( i+1 ) ) / 2
295 IF( unit )
296 $ tmp = tmp + abs( x( i, k ) )
297 DO 70 j = i + ifu, n
298 tmp = tmp + abs( ap( jc+j-i ) )*abs( x( j, k ) )
299 70 CONTINUE
300 END IF
301 END IF
302 IF( i.EQ.1 ) THEN
303 axbi = tmp
304 ELSE
305 axbi = min( axbi, tmp )
306 END IF
307 80 CONTINUE
308 tmp = berr( k ) / ( ( n+1 )*eps+( n+1 )*unfl /
309 $ max( axbi, ( n+1 )*unfl ) )
310 IF( k.EQ.1 ) THEN
311 reslts( 2 ) = tmp
312 ELSE
313 reslts( 2 ) = max( reslts( 2 ), tmp )
314 END IF
315 90 CONTINUE
316*
317 RETURN
318*
319* End of DTPT05
320*
integer function idamax(n, dx, incx)
IDAMAX
Definition idamax.f:71
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the caller graph for this function: