LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ spftrs()

subroutine spftrs ( character  transr,
character  uplo,
integer  n,
integer  nrhs,
real, dimension( 0: * )  a,
real, dimension( ldb, * )  b,
integer  ldb,
integer  info 
)

SPFTRS

Download SPFTRS + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SPFTRS solves a system of linear equations A*X = B with a symmetric
 positive definite matrix A using the Cholesky factorization
 A = U**T*U or A = L*L**T computed by SPFTRF.
Parameters
[in]TRANSR
          TRANSR is CHARACTER*1
          = 'N':  The Normal TRANSR of RFP A is stored;
          = 'T':  The Transpose TRANSR of RFP A is stored.
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of RFP A is stored;
          = 'L':  Lower triangle of RFP A is stored.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.
[in]A
          A is REAL array, dimension ( N*(N+1)/2 )
          The triangular factor U or L from the Cholesky factorization
          of RFP A = U**H*U or RFP A = L*L**T, as computed by SPFTRF.
          See note below for more details about RFP A.
[in,out]B
          B is REAL array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B.
          On exit, the solution matrix X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  We first consider Rectangular Full Packed (RFP) Format when N is
  even. We give an example where N = 6.

      AP is Upper             AP is Lower

   00 01 02 03 04 05       00
      11 12 13 14 15       10 11
         22 23 24 25       20 21 22
            33 34 35       30 31 32 33
               44 45       40 41 42 43 44
                  55       50 51 52 53 54 55


  Let TRANSR = 'N'. RFP holds AP as follows:
  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  the transpose of the first three columns of AP upper.
  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  the transpose of the last three columns of AP lower.
  This covers the case N even and TRANSR = 'N'.

         RFP A                   RFP A

        03 04 05                33 43 53
        13 14 15                00 44 54
        23 24 25                10 11 55
        33 34 35                20 21 22
        00 44 45                30 31 32
        01 11 55                40 41 42
        02 12 22                50 51 52

  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  transpose of RFP A above. One therefore gets:


           RFP A                   RFP A

     03 13 23 33 00 01 02    33 00 10 20 30 40 50
     04 14 24 34 44 11 12    43 44 11 21 31 41 51
     05 15 25 35 45 55 22    53 54 55 22 32 42 52


  We then consider Rectangular Full Packed (RFP) Format when N is
  odd. We give an example where N = 5.

     AP is Upper                 AP is Lower

   00 01 02 03 04              00
      11 12 13 14              10 11
         22 23 24              20 21 22
            33 34              30 31 32 33
               44              40 41 42 43 44


  Let TRANSR = 'N'. RFP holds AP as follows:
  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  the transpose of the first two columns of AP upper.
  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  the transpose of the last two columns of AP lower.
  This covers the case N odd and TRANSR = 'N'.

         RFP A                   RFP A

        02 03 04                00 33 43
        12 13 14                10 11 44
        22 23 24                20 21 22
        00 33 34                30 31 32
        01 11 44                40 41 42

  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  transpose of RFP A above. One therefore gets:

           RFP A                   RFP A

     02 12 22 00 01             00 10 20 30 40 50
     03 13 23 33 11             33 11 21 31 41 51
     04 14 24 34 44             43 44 22 32 42 52

Definition at line 198 of file spftrs.f.

199*
200* -- LAPACK computational routine --
201* -- LAPACK is a software package provided by Univ. of Tennessee, --
202* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
203*
204* .. Scalar Arguments ..
205 CHARACTER TRANSR, UPLO
206 INTEGER INFO, LDB, N, NRHS
207* ..
208* .. Array Arguments ..
209 REAL A( 0: * ), B( LDB, * )
210* ..
211*
212* =====================================================================
213*
214* .. Parameters ..
215 REAL ONE
216 parameter( one = 1.0e+0 )
217* ..
218* .. Local Scalars ..
219 LOGICAL LOWER, NORMALTRANSR
220* ..
221* .. External Functions ..
222 LOGICAL LSAME
223 EXTERNAL lsame
224* ..
225* .. External Subroutines ..
226 EXTERNAL xerbla, stfsm
227* ..
228* .. Intrinsic Functions ..
229 INTRINSIC max
230* ..
231* .. Executable Statements ..
232*
233* Test the input parameters.
234*
235 info = 0
236 normaltransr = lsame( transr, 'N' )
237 lower = lsame( uplo, 'L' )
238 IF( .NOT.normaltransr .AND. .NOT.lsame( transr, 'T' ) ) THEN
239 info = -1
240 ELSE IF( .NOT.lower .AND. .NOT.lsame( uplo, 'U' ) ) THEN
241 info = -2
242 ELSE IF( n.LT.0 ) THEN
243 info = -3
244 ELSE IF( nrhs.LT.0 ) THEN
245 info = -4
246 ELSE IF( ldb.LT.max( 1, n ) ) THEN
247 info = -7
248 END IF
249 IF( info.NE.0 ) THEN
250 CALL xerbla( 'SPFTRS', -info )
251 RETURN
252 END IF
253*
254* Quick return if possible
255*
256 IF( n.EQ.0 .OR. nrhs.EQ.0 )
257 $ RETURN
258*
259* start execution: there are two triangular solves
260*
261 IF( lower ) THEN
262 CALL stfsm( transr, 'L', uplo, 'N', 'N', n, nrhs, one, a, b,
263 $ ldb )
264 CALL stfsm( transr, 'L', uplo, 'T', 'N', n, nrhs, one, a, b,
265 $ ldb )
266 ELSE
267 CALL stfsm( transr, 'L', uplo, 'T', 'N', n, nrhs, one, a, b,
268 $ ldb )
269 CALL stfsm( transr, 'L', uplo, 'N', 'N', n, nrhs, one, a, b,
270 $ ldb )
271 END IF
272*
273 RETURN
274*
275* End of SPFTRS
276*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine stfsm(transr, side, uplo, trans, diag, m, n, alpha, a, b, ldb)
STFSM solves a matrix equation (one operand is a triangular matrix in RFP format).
Definition stfsm.f:277
Here is the call graph for this function:
Here is the caller graph for this function: