LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ crzt01()

real function crzt01 ( integer  m,
integer  n,
complex, dimension( lda, * )  a,
complex, dimension( lda, * )  af,
integer  lda,
complex, dimension( * )  tau,
complex, dimension( lwork )  work,
integer  lwork 
)

CRZT01

Purpose:
 CRZT01 returns
      || A - R*Q || / ( M * eps * ||A|| )
 for an upper trapezoidal A that was factored with CTZRZF.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrices A and AF.
[in]N
          N is INTEGER
          The number of columns of the matrices A and AF.
[in]A
          A is COMPLEX array, dimension (LDA,N)
          The original upper trapezoidal M by N matrix A.
[in]AF
          AF is COMPLEX array, dimension (LDA,N)
          The output of CTZRZF for input matrix A.
          The lower triangle is not referenced.
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays A and AF.
[in]TAU
          TAU is COMPLEX array, dimension (M)
          Details of the  Householder transformations as returned by
          CTZRZF.
[out]WORK
          WORK is COMPLEX array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The length of the array WORK.  LWORK >= m*n + m.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 96 of file crzt01.f.

98*
99* -- LAPACK test routine --
100* -- LAPACK is a software package provided by Univ. of Tennessee, --
101* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
102*
103* .. Scalar Arguments ..
104 INTEGER LDA, LWORK, M, N
105* ..
106* .. Array Arguments ..
107 COMPLEX A( LDA, * ), AF( LDA, * ), TAU( * ),
108 $ WORK( LWORK )
109* ..
110*
111* =====================================================================
112*
113* .. Parameters ..
114 REAL ZERO, ONE
115 parameter( zero = 0.0e0, one = 1.0e0 )
116* ..
117* .. Local Scalars ..
118 INTEGER I, INFO, J
119 REAL NORMA
120* ..
121* .. Local Arrays ..
122 REAL RWORK( 1 )
123* ..
124* .. External Functions ..
125 REAL CLANGE, SLAMCH
126 EXTERNAL clange, slamch
127* ..
128* .. External Subroutines ..
129 EXTERNAL caxpy, claset, cunmrz, xerbla
130* ..
131* .. Intrinsic Functions ..
132 INTRINSIC cmplx, max, real
133* ..
134* .. Executable Statements ..
135*
136 crzt01 = zero
137*
138 IF( lwork.LT.m*n+m ) THEN
139 CALL xerbla( 'CRZT01', 8 )
140 RETURN
141 END IF
142*
143* Quick return if possible
144*
145 IF( m.LE.0 .OR. n.LE.0 )
146 $ RETURN
147*
148 norma = clange( 'One-norm', m, n, a, lda, rwork )
149*
150* Copy upper triangle R
151*
152 CALL claset( 'Full', m, n, cmplx( zero ), cmplx( zero ), work, m )
153 DO 20 j = 1, m
154 DO 10 i = 1, j
155 work( ( j-1 )*m+i ) = af( i, j )
156 10 CONTINUE
157 20 CONTINUE
158*
159* R = R * P(1) * ... *P(m)
160*
161 CALL cunmrz( 'Right', 'No transpose', m, n, m, n-m, af, lda, tau,
162 $ work, m, work( m*n+1 ), lwork-m*n, info )
163*
164* R = R - A
165*
166 DO 30 i = 1, n
167 CALL caxpy( m, cmplx( -one ), a( 1, i ), 1,
168 $ work( ( i-1 )*m+1 ), 1 )
169 30 CONTINUE
170*
171 crzt01 = clange( 'One-norm', m, n, work, m, rwork )
172*
173 crzt01 = crzt01 / ( slamch( 'Epsilon' )*real( max( m, n ) ) )
174 IF( norma.NE.zero )
175 $ crzt01 = crzt01 / norma
176*
177 RETURN
178*
179* End of CRZT01
180*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
real function crzt01(m, n, a, af, lda, tau, work, lwork)
CRZT01
Definition crzt01.f:98
subroutine caxpy(n, ca, cx, incx, cy, incy)
CAXPY
Definition caxpy.f:88
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clange(norm, m, n, a, lda, work)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition clange.f:115
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:106
subroutine cunmrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)
CUNMRZ
Definition cunmrz.f:187
Here is the call graph for this function:
Here is the caller graph for this function: