LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dlagtf.f
Go to the documentation of this file.
1*> \brief \b DLAGTF computes an LU factorization of a matrix T-λI, where T is a general tridiagonal matrix, and λ a scalar, using partial pivoting with row interchanges.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download DLAGTF + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlagtf.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlagtf.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlagtf.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE DLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER INFO, N
23* DOUBLE PRECISION LAMBDA, TOL
24* ..
25* .. Array Arguments ..
26* INTEGER IN( * )
27* DOUBLE PRECISION A( * ), B( * ), C( * ), D( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n
37*> tridiagonal matrix and lambda is a scalar, as
38*>
39*> T - lambda*I = PLU,
40*>
41*> where P is a permutation matrix, L is a unit lower tridiagonal matrix
42*> with at most one non-zero sub-diagonal elements per column and U is
43*> an upper triangular matrix with at most two non-zero super-diagonal
44*> elements per column.
45*>
46*> The factorization is obtained by Gaussian elimination with partial
47*> pivoting and implicit row scaling.
48*>
49*> The parameter LAMBDA is included in the routine so that DLAGTF may
50*> be used, in conjunction with DLAGTS, to obtain eigenvectors of T by
51*> inverse iteration.
52*> \endverbatim
53*
54* Arguments:
55* ==========
56*
57*> \param[in] N
58*> \verbatim
59*> N is INTEGER
60*> The order of the matrix T.
61*> \endverbatim
62*>
63*> \param[in,out] A
64*> \verbatim
65*> A is DOUBLE PRECISION array, dimension (N)
66*> On entry, A must contain the diagonal elements of T.
67*>
68*> On exit, A is overwritten by the n diagonal elements of the
69*> upper triangular matrix U of the factorization of T.
70*> \endverbatim
71*>
72*> \param[in] LAMBDA
73*> \verbatim
74*> LAMBDA is DOUBLE PRECISION
75*> On entry, the scalar lambda.
76*> \endverbatim
77*>
78*> \param[in,out] B
79*> \verbatim
80*> B is DOUBLE PRECISION array, dimension (N-1)
81*> On entry, B must contain the (n-1) super-diagonal elements of
82*> T.
83*>
84*> On exit, B is overwritten by the (n-1) super-diagonal
85*> elements of the matrix U of the factorization of T.
86*> \endverbatim
87*>
88*> \param[in,out] C
89*> \verbatim
90*> C is DOUBLE PRECISION array, dimension (N-1)
91*> On entry, C must contain the (n-1) sub-diagonal elements of
92*> T.
93*>
94*> On exit, C is overwritten by the (n-1) sub-diagonal elements
95*> of the matrix L of the factorization of T.
96*> \endverbatim
97*>
98*> \param[in] TOL
99*> \verbatim
100*> TOL is DOUBLE PRECISION
101*> On entry, a relative tolerance used to indicate whether or
102*> not the matrix (T - lambda*I) is nearly singular. TOL should
103*> normally be chose as approximately the largest relative error
104*> in the elements of T. For example, if the elements of T are
105*> correct to about 4 significant figures, then TOL should be
106*> set to about 5*10**(-4). If TOL is supplied as less than eps,
107*> where eps is the relative machine precision, then the value
108*> eps is used in place of TOL.
109*> \endverbatim
110*>
111*> \param[out] D
112*> \verbatim
113*> D is DOUBLE PRECISION array, dimension (N-2)
114*> On exit, D is overwritten by the (n-2) second super-diagonal
115*> elements of the matrix U of the factorization of T.
116*> \endverbatim
117*>
118*> \param[out] IN
119*> \verbatim
120*> IN is INTEGER array, dimension (N)
121*> On exit, IN contains details of the permutation matrix P. If
122*> an interchange occurred at the kth step of the elimination,
123*> then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
124*> returns the smallest positive integer j such that
125*>
126*> abs( u(j,j) ) <= norm( (T - lambda*I)(j) )*TOL,
127*>
128*> where norm( A(j) ) denotes the sum of the absolute values of
129*> the jth row of the matrix A. If no such j exists then IN(n)
130*> is returned as zero. If IN(n) is returned as positive, then a
131*> diagonal element of U is small, indicating that
132*> (T - lambda*I) is singular or nearly singular,
133*> \endverbatim
134*>
135*> \param[out] INFO
136*> \verbatim
137*> INFO is INTEGER
138*> = 0: successful exit
139*> < 0: if INFO = -k, the kth argument had an illegal value
140*> \endverbatim
141*
142* Authors:
143* ========
144*
145*> \author Univ. of Tennessee
146*> \author Univ. of California Berkeley
147*> \author Univ. of Colorado Denver
148*> \author NAG Ltd.
149*
150*> \ingroup lagtf
151*
152* =====================================================================
153 SUBROUTINE dlagtf( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
154*
155* -- LAPACK computational routine --
156* -- LAPACK is a software package provided by Univ. of Tennessee, --
157* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
158*
159* .. Scalar Arguments ..
160 INTEGER INFO, N
161 DOUBLE PRECISION LAMBDA, TOL
162* ..
163* .. Array Arguments ..
164 INTEGER IN( * )
165 DOUBLE PRECISION A( * ), B( * ), C( * ), D( * )
166* ..
167*
168* =====================================================================
169*
170* .. Parameters ..
171 DOUBLE PRECISION ZERO
172 parameter( zero = 0.0d+0 )
173* ..
174* .. Local Scalars ..
175 INTEGER K
176 DOUBLE PRECISION EPS, MULT, PIV1, PIV2, SCALE1, SCALE2, TEMP, TL
177* ..
178* .. Intrinsic Functions ..
179 INTRINSIC abs, max
180* ..
181* .. External Functions ..
182 DOUBLE PRECISION DLAMCH
183 EXTERNAL dlamch
184* ..
185* .. External Subroutines ..
186 EXTERNAL xerbla
187* ..
188* .. Executable Statements ..
189*
190 info = 0
191 IF( n.LT.0 ) THEN
192 info = -1
193 CALL xerbla( 'DLAGTF', -info )
194 RETURN
195 END IF
196*
197 IF( n.EQ.0 )
198 $ RETURN
199*
200 a( 1 ) = a( 1 ) - lambda
201 in( n ) = 0
202 IF( n.EQ.1 ) THEN
203 IF( a( 1 ).EQ.zero )
204 $ in( 1 ) = 1
205 RETURN
206 END IF
207*
208 eps = dlamch( 'Epsilon' )
209*
210 tl = max( tol, eps )
211 scale1 = abs( a( 1 ) ) + abs( b( 1 ) )
212 DO 10 k = 1, n - 1
213 a( k+1 ) = a( k+1 ) - lambda
214 scale2 = abs( c( k ) ) + abs( a( k+1 ) )
215 IF( k.LT.( n-1 ) )
216 $ scale2 = scale2 + abs( b( k+1 ) )
217 IF( a( k ).EQ.zero ) THEN
218 piv1 = zero
219 ELSE
220 piv1 = abs( a( k ) ) / scale1
221 END IF
222 IF( c( k ).EQ.zero ) THEN
223 in( k ) = 0
224 piv2 = zero
225 scale1 = scale2
226 IF( k.LT.( n-1 ) )
227 $ d( k ) = zero
228 ELSE
229 piv2 = abs( c( k ) ) / scale2
230 IF( piv2.LE.piv1 ) THEN
231 in( k ) = 0
232 scale1 = scale2
233 c( k ) = c( k ) / a( k )
234 a( k+1 ) = a( k+1 ) - c( k )*b( k )
235 IF( k.LT.( n-1 ) )
236 $ d( k ) = zero
237 ELSE
238 in( k ) = 1
239 mult = a( k ) / c( k )
240 a( k ) = c( k )
241 temp = a( k+1 )
242 a( k+1 ) = b( k ) - mult*temp
243 IF( k.LT.( n-1 ) ) THEN
244 d( k ) = b( k+1 )
245 b( k+1 ) = -mult*d( k )
246 END IF
247 b( k ) = temp
248 c( k ) = mult
249 END IF
250 END IF
251 IF( ( max( piv1, piv2 ).LE.tl ) .AND. ( in( n ).EQ.0 ) )
252 $ in( n ) = k
253 10 CONTINUE
254 IF( ( abs( a( n ) ).LE.scale1*tl ) .AND. ( in( n ).EQ.0 ) )
255 $ in( n ) = n
256*
257 RETURN
258*
259* End of DLAGTF
260*
261 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dlagtf(n, a, lambda, b, c, tol, d, in, info)
DLAGTF computes an LU factorization of a matrix T-λI, where T is a general tridiagonal matrix,...
Definition dlagtf.f:154