LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dpot01 | ( | character | uplo, |
integer | n, | ||
double precision, dimension( lda, * ) | a, | ||
integer | lda, | ||
double precision, dimension( ldafac, * ) | afac, | ||
integer | ldafac, | ||
double precision, dimension( * ) | rwork, | ||
double precision | resid ) |
DPOT01
!> !> DPOT01 reconstructs a symmetric positive definite matrix A from !> its L*L' or U'*U factorization and computes the residual !> norm( L*L' - A ) / ( N * norm(A) * EPS ) or !> norm( U'*U - A ) / ( N * norm(A) * EPS ), !> where EPS is the machine epsilon. !>
[in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> symmetric matrix A is stored: !> = 'U': Upper triangular !> = 'L': Lower triangular !> |
[in] | N | !> N is INTEGER !> The number of rows and columns of the matrix A. N >= 0. !> |
[in] | A | !> A is DOUBLE PRECISION array, dimension (LDA,N) !> The original symmetric matrix A. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N) !> |
[in,out] | AFAC | !> AFAC is DOUBLE PRECISION array, dimension (LDAFAC,N) !> On entry, the factor L or U from the L * L**T or U**T * U !> factorization of A. !> Overwritten with the reconstructed matrix, and then with !> the difference L * L**T - A (or U**T * U - A). !> |
[in] | LDAFAC | !> LDAFAC is INTEGER !> The leading dimension of the array AFAC. LDAFAC >= max(1,N). !> |
[out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
[out] | RESID | !> RESID is DOUBLE PRECISION !> If UPLO = 'L', norm(L * L**T - A) / ( N * norm(A) * EPS ) !> If UPLO = 'U', norm(U**T * U - A) / ( N * norm(A) * EPS ) !> |
Definition at line 103 of file dpot01.f.