LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zlaqhb()

subroutine zlaqhb ( character uplo,
integer n,
integer kd,
complex*16, dimension( ldab, * ) ab,
integer ldab,
double precision, dimension( * ) s,
double precision scond,
double precision amax,
character equed )

ZLAQHB scales a Hermitian band matrix, using scaling factors computed by cpbequ.

Download ZLAQHB + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZLAQHB equilibrates a Hermitian band matrix A
!> using the scaling factors in the vector S.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          symmetric matrix A is stored.
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]KD
!>          KD is INTEGER
!>          The number of super-diagonals of the matrix A if UPLO = 'U',
!>          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
!> 
[in,out]AB
!>          AB is COMPLEX*16 array, dimension (LDAB,N)
!>          On entry, the upper or lower triangle of the symmetric band
!>          matrix A, stored in the first KD+1 rows of the array.  The
!>          j-th column of A is stored in the j-th column of the array AB
!>          as follows:
!>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
!>
!>          On exit, if INFO = 0, the triangular factor U or L from the
!>          Cholesky factorization A = U**H *U or A = L*L**H of the band
!>          matrix A, in the same storage format as A.
!> 
[in]LDAB
!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KD+1.
!> 
[out]S
!>          S is DOUBLE PRECISION array, dimension (N)
!>          The scale factors for A.
!> 
[in]SCOND
!>          SCOND is DOUBLE PRECISION
!>          Ratio of the smallest S(i) to the largest S(i).
!> 
[in]AMAX
!>          AMAX is DOUBLE PRECISION
!>          Absolute value of largest matrix entry.
!> 
[out]EQUED
!>          EQUED is CHARACTER*1
!>          Specifies whether or not equilibration was done.
!>          = 'N':  No equilibration.
!>          = 'Y':  Equilibration was done, i.e., A has been replaced by
!>                  diag(S) * A * diag(S).
!> 
Internal Parameters:
!>  THRESH is a threshold value used to decide if scaling should be done
!>  based on the ratio of the scaling factors.  If SCOND < THRESH,
!>  scaling is done.
!>
!>  LARGE and SMALL are threshold values used to decide if scaling should
!>  be done based on the absolute size of the largest matrix element.
!>  If AMAX > LARGE or AMAX < SMALL, scaling is done.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 138 of file zlaqhb.f.

140*
141* -- LAPACK auxiliary routine --
142* -- LAPACK is a software package provided by Univ. of Tennessee, --
143* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
144*
145* .. Scalar Arguments ..
146 CHARACTER EQUED, UPLO
147 INTEGER KD, LDAB, N
148 DOUBLE PRECISION AMAX, SCOND
149* ..
150* .. Array Arguments ..
151 DOUBLE PRECISION S( * )
152 COMPLEX*16 AB( LDAB, * )
153* ..
154*
155* =====================================================================
156*
157* .. Parameters ..
158 DOUBLE PRECISION ONE, THRESH
159 parameter( one = 1.0d+0, thresh = 0.1d+0 )
160* ..
161* .. Local Scalars ..
162 INTEGER I, J
163 DOUBLE PRECISION CJ, LARGE, SMALL
164* ..
165* .. External Functions ..
166 LOGICAL LSAME
167 DOUBLE PRECISION DLAMCH
168 EXTERNAL lsame, dlamch
169* ..
170* .. Intrinsic Functions ..
171 INTRINSIC dble, max, min
172* ..
173* .. Executable Statements ..
174*
175* Quick return if possible
176*
177 IF( n.LE.0 ) THEN
178 equed = 'N'
179 RETURN
180 END IF
181*
182* Initialize LARGE and SMALL.
183*
184 small = dlamch( 'Safe minimum' ) / dlamch( 'Precision' )
185 large = one / small
186*
187 IF( scond.GE.thresh .AND. amax.GE.small .AND. amax.LE.large ) THEN
188*
189* No equilibration
190*
191 equed = 'N'
192 ELSE
193*
194* Replace A by diag(S) * A * diag(S).
195*
196 IF( lsame( uplo, 'U' ) ) THEN
197*
198* Upper triangle of A is stored in band format.
199*
200 DO 20 j = 1, n
201 cj = s( j )
202 DO 10 i = max( 1, j-kd ), j - 1
203 ab( kd+1+i-j, j ) = cj*s( i )*ab( kd+1+i-j, j )
204 10 CONTINUE
205 ab( kd+1, j ) = cj*cj*dble( ab( kd+1, j ) )
206 20 CONTINUE
207 ELSE
208*
209* Lower triangle of A is stored.
210*
211 DO 40 j = 1, n
212 cj = s( j )
213 ab( 1, j ) = cj*cj*dble( ab( 1, j ) )
214 DO 30 i = j + 1, min( n, j+kd )
215 ab( 1+i-j, j ) = cj*s( i )*ab( 1+i-j, j )
216 30 CONTINUE
217 40 CONTINUE
218 END IF
219 equed = 'Y'
220 END IF
221*
222 RETURN
223*
224* End of ZLAQHB
225*
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the caller graph for this function: