LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zlatb4()

subroutine zlatb4 ( character*3  PATH,
integer  IMAT,
integer  M,
integer  N,
character  TYPE,
integer  KL,
integer  KU,
double precision  ANORM,
integer  MODE,
double precision  CNDNUM,
character  DIST 
)

ZLATB4

Purpose:
 ZLATB4 sets parameters for the matrix generator based on the type of
 matrix to be generated.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name.
[in]IMAT
          IMAT is INTEGER
          An integer key describing which matrix to generate for this
          path.
[in]M
          M is INTEGER
          The number of rows in the matrix to be generated.
[in]N
          N is INTEGER
          The number of columns in the matrix to be generated.
[out]TYPE
          TYPE is CHARACTER*1
          The type of the matrix to be generated:
          = 'S':  symmetric matrix
          = 'H':  Hermitian matrix
          = 'P':  Hermitian positive (semi)definite matrix
          = 'N':  nonsymmetric matrix
[out]KL
          KL is INTEGER
          The lower band width of the matrix to be generated.
[out]KU
          KU is INTEGER
          The upper band width of the matrix to be generated.
[out]ANORM
          ANORM is DOUBLE PRECISION
          The desired norm of the matrix to be generated.  The diagonal
          matrix of singular values or eigenvalues is scaled by this
          value.
[out]MODE
          MODE is INTEGER
          A key indicating how to choose the vector of eigenvalues.
[out]CNDNUM
          CNDNUM is DOUBLE PRECISION
          The desired condition number.
[out]DIST
          DIST is CHARACTER*1
          The type of distribution to be used by the random number
          generator.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 119 of file zlatb4.f.

121*
122* -- LAPACK test routine --
123* -- LAPACK is a software package provided by Univ. of Tennessee, --
124* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
125*
126* .. Scalar Arguments ..
127 CHARACTER DIST, TYPE
128 CHARACTER*3 PATH
129 INTEGER IMAT, KL, KU, M, MODE, N
130 DOUBLE PRECISION ANORM, CNDNUM
131* ..
132*
133* =====================================================================
134*
135* .. Parameters ..
136 DOUBLE PRECISION SHRINK, TENTH
137 parameter( shrink = 0.25d0, tenth = 0.1d+0 )
138 DOUBLE PRECISION ONE
139 parameter( one = 1.0d+0 )
140 DOUBLE PRECISION TWO
141 parameter( two = 2.0d+0 )
142* ..
143* .. Local Scalars ..
144 LOGICAL FIRST
145 CHARACTER*2 C2
146 INTEGER MAT
147 DOUBLE PRECISION BADC1, BADC2, EPS, LARGE, SMALL
148* ..
149* .. External Functions ..
150 LOGICAL LSAMEN
151 DOUBLE PRECISION DLAMCH
152 EXTERNAL lsamen, dlamch
153* ..
154* .. Intrinsic Functions ..
155 INTRINSIC abs, max, sqrt
156* ..
157* .. External Subroutines ..
158 EXTERNAL dlabad
159* ..
160* .. Save statement ..
161 SAVE eps, small, large, badc1, badc2, first
162* ..
163* .. Data statements ..
164 DATA first / .true. /
165* ..
166* .. Executable Statements ..
167*
168* Set some constants for use in the subroutine.
169*
170 IF( first ) THEN
171 first = .false.
172 eps = dlamch( 'Precision' )
173 badc2 = tenth / eps
174 badc1 = sqrt( badc2 )
175 small = dlamch( 'Safe minimum' )
176 large = one / small
177*
178* If it looks like we're on a Cray, take the square root of
179* SMALL and LARGE to avoid overflow and underflow problems.
180*
181 CALL dlabad( small, large )
182 small = shrink*( small / eps )
183 large = one / small
184 END IF
185*
186 c2 = path( 2: 3 )
187*
188* Set some parameters we don't plan to change.
189*
190 dist = 'S'
191 mode = 3
192*
193* xQR, xLQ, xQL, xRQ: Set parameters to generate a general
194* M x N matrix.
195*
196 IF( lsamen( 2, c2, 'QR' ) .OR. lsamen( 2, c2, 'LQ' ) .OR.
197 $ lsamen( 2, c2, 'QL' ) .OR. lsamen( 2, c2, 'RQ' ) ) THEN
198*
199* Set TYPE, the type of matrix to be generated.
200*
201 TYPE = 'N'
202*
203* Set the lower and upper bandwidths.
204*
205 IF( imat.EQ.1 ) THEN
206 kl = 0
207 ku = 0
208 ELSE IF( imat.EQ.2 ) THEN
209 kl = 0
210 ku = max( n-1, 0 )
211 ELSE IF( imat.EQ.3 ) THEN
212 kl = max( m-1, 0 )
213 ku = 0
214 ELSE
215 kl = max( m-1, 0 )
216 ku = max( n-1, 0 )
217 END IF
218*
219* Set the condition number and norm.
220*
221 IF( imat.EQ.5 ) THEN
222 cndnum = badc1
223 ELSE IF( imat.EQ.6 ) THEN
224 cndnum = badc2
225 ELSE
226 cndnum = two
227 END IF
228*
229 IF( imat.EQ.7 ) THEN
230 anorm = small
231 ELSE IF( imat.EQ.8 ) THEN
232 anorm = large
233 ELSE
234 anorm = one
235 END IF
236*
237 ELSE IF( lsamen( 2, c2, 'GE' ) ) THEN
238*
239* xGE: Set parameters to generate a general M x N matrix.
240*
241* Set TYPE, the type of matrix to be generated.
242*
243 TYPE = 'N'
244*
245* Set the lower and upper bandwidths.
246*
247 IF( imat.EQ.1 ) THEN
248 kl = 0
249 ku = 0
250 ELSE IF( imat.EQ.2 ) THEN
251 kl = 0
252 ku = max( n-1, 0 )
253 ELSE IF( imat.EQ.3 ) THEN
254 kl = max( m-1, 0 )
255 ku = 0
256 ELSE
257 kl = max( m-1, 0 )
258 ku = max( n-1, 0 )
259 END IF
260*
261* Set the condition number and norm.
262*
263 IF( imat.EQ.8 ) THEN
264 cndnum = badc1
265 ELSE IF( imat.EQ.9 ) THEN
266 cndnum = badc2
267 ELSE
268 cndnum = two
269 END IF
270*
271 IF( imat.EQ.10 ) THEN
272 anorm = small
273 ELSE IF( imat.EQ.11 ) THEN
274 anorm = large
275 ELSE
276 anorm = one
277 END IF
278*
279 ELSE IF( lsamen( 2, c2, 'GB' ) ) THEN
280*
281* xGB: Set parameters to generate a general banded matrix.
282*
283* Set TYPE, the type of matrix to be generated.
284*
285 TYPE = 'N'
286*
287* Set the condition number and norm.
288*
289 IF( imat.EQ.5 ) THEN
290 cndnum = badc1
291 ELSE IF( imat.EQ.6 ) THEN
292 cndnum = tenth*badc2
293 ELSE
294 cndnum = two
295 END IF
296*
297 IF( imat.EQ.7 ) THEN
298 anorm = small
299 ELSE IF( imat.EQ.8 ) THEN
300 anorm = large
301 ELSE
302 anorm = one
303 END IF
304*
305 ELSE IF( lsamen( 2, c2, 'GT' ) ) THEN
306*
307* xGT: Set parameters to generate a general tridiagonal matrix.
308*
309* Set TYPE, the type of matrix to be generated.
310*
311 TYPE = 'N'
312*
313* Set the lower and upper bandwidths.
314*
315 IF( imat.EQ.1 ) THEN
316 kl = 0
317 ELSE
318 kl = 1
319 END IF
320 ku = kl
321*
322* Set the condition number and norm.
323*
324 IF( imat.EQ.3 ) THEN
325 cndnum = badc1
326 ELSE IF( imat.EQ.4 ) THEN
327 cndnum = badc2
328 ELSE
329 cndnum = two
330 END IF
331*
332 IF( imat.EQ.5 .OR. imat.EQ.11 ) THEN
333 anorm = small
334 ELSE IF( imat.EQ.6 .OR. imat.EQ.12 ) THEN
335 anorm = large
336 ELSE
337 anorm = one
338 END IF
339*
340 ELSE IF( lsamen( 2, c2, 'PO' ) .OR. lsamen( 2, c2, 'PP' ) ) THEN
341*
342* xPO, xPP: Set parameters to generate a
343* symmetric or Hermitian positive definite matrix.
344*
345* Set TYPE, the type of matrix to be generated.
346*
347 TYPE = c2( 1: 1 )
348*
349* Set the lower and upper bandwidths.
350*
351 IF( imat.EQ.1 ) THEN
352 kl = 0
353 ELSE
354 kl = max( n-1, 0 )
355 END IF
356 ku = kl
357*
358* Set the condition number and norm.
359*
360 IF( imat.EQ.6 ) THEN
361 cndnum = badc1
362 ELSE IF( imat.EQ.7 ) THEN
363 cndnum = badc2
364 ELSE
365 cndnum = two
366 END IF
367*
368 IF( imat.EQ.8 ) THEN
369 anorm = small
370 ELSE IF( imat.EQ.9 ) THEN
371 anorm = large
372 ELSE
373 anorm = one
374 END IF
375*
376 ELSE IF( lsamen( 2, c2, 'HE' ) .OR. lsamen( 2, c2, 'HP' ) .OR.
377 $ lsamen( 2, c2, 'SY' ) .OR. lsamen( 2, c2, 'SP' ) ) THEN
378*
379* xHE, xHP, xSY, xSP: Set parameters to generate a
380* symmetric or Hermitian matrix.
381*
382* Set TYPE, the type of matrix to be generated.
383*
384 TYPE = c2( 1: 1 )
385*
386* Set the lower and upper bandwidths.
387*
388 IF( imat.EQ.1 ) THEN
389 kl = 0
390 ELSE
391 kl = max( n-1, 0 )
392 END IF
393 ku = kl
394*
395* Set the condition number and norm.
396*
397 IF( imat.EQ.7 ) THEN
398 cndnum = badc1
399 ELSE IF( imat.EQ.8 ) THEN
400 cndnum = badc2
401 ELSE
402 cndnum = two
403 END IF
404*
405 IF( imat.EQ.9 ) THEN
406 anorm = small
407 ELSE IF( imat.EQ.10 ) THEN
408 anorm = large
409 ELSE
410 anorm = one
411 END IF
412*
413 ELSE IF( lsamen( 2, c2, 'PB' ) ) THEN
414*
415* xPB: Set parameters to generate a symmetric band matrix.
416*
417* Set TYPE, the type of matrix to be generated.
418*
419 TYPE = 'P'
420*
421* Set the norm and condition number.
422*
423 IF( imat.EQ.5 ) THEN
424 cndnum = badc1
425 ELSE IF( imat.EQ.6 ) THEN
426 cndnum = badc2
427 ELSE
428 cndnum = two
429 END IF
430*
431 IF( imat.EQ.7 ) THEN
432 anorm = small
433 ELSE IF( imat.EQ.8 ) THEN
434 anorm = large
435 ELSE
436 anorm = one
437 END IF
438*
439 ELSE IF( lsamen( 2, c2, 'PT' ) ) THEN
440*
441* xPT: Set parameters to generate a symmetric positive definite
442* tridiagonal matrix.
443*
444 TYPE = 'P'
445 IF( imat.EQ.1 ) THEN
446 kl = 0
447 ELSE
448 kl = 1
449 END IF
450 ku = kl
451*
452* Set the condition number and norm.
453*
454 IF( imat.EQ.3 ) THEN
455 cndnum = badc1
456 ELSE IF( imat.EQ.4 ) THEN
457 cndnum = badc2
458 ELSE
459 cndnum = two
460 END IF
461*
462 IF( imat.EQ.5 .OR. imat.EQ.11 ) THEN
463 anorm = small
464 ELSE IF( imat.EQ.6 .OR. imat.EQ.12 ) THEN
465 anorm = large
466 ELSE
467 anorm = one
468 END IF
469*
470 ELSE IF( lsamen( 2, c2, 'TR' ) .OR. lsamen( 2, c2, 'TP' ) ) THEN
471*
472* xTR, xTP: Set parameters to generate a triangular matrix
473*
474* Set TYPE, the type of matrix to be generated.
475*
476 TYPE = 'N'
477*
478* Set the lower and upper bandwidths.
479*
480 mat = abs( imat )
481 IF( mat.EQ.1 .OR. mat.EQ.7 ) THEN
482 kl = 0
483 ku = 0
484 ELSE IF( imat.LT.0 ) THEN
485 kl = max( n-1, 0 )
486 ku = 0
487 ELSE
488 kl = 0
489 ku = max( n-1, 0 )
490 END IF
491*
492* Set the condition number and norm.
493*
494 IF( mat.EQ.3 .OR. mat.EQ.9 ) THEN
495 cndnum = badc1
496 ELSE IF( mat.EQ.4 .OR. mat.EQ.10 ) THEN
497 cndnum = badc2
498 ELSE
499 cndnum = two
500 END IF
501*
502 IF( mat.EQ.5 ) THEN
503 anorm = small
504 ELSE IF( mat.EQ.6 ) THEN
505 anorm = large
506 ELSE
507 anorm = one
508 END IF
509*
510 ELSE IF( lsamen( 2, c2, 'TB' ) ) THEN
511*
512* xTB: Set parameters to generate a triangular band matrix.
513*
514* Set TYPE, the type of matrix to be generated.
515*
516 TYPE = 'N'
517*
518* Set the norm and condition number.
519*
520 mat = abs( imat )
521 IF( mat.EQ.2 .OR. mat.EQ.8 ) THEN
522 cndnum = badc1
523 ELSE IF( mat.EQ.3 .OR. mat.EQ.9 ) THEN
524 cndnum = badc2
525 ELSE
526 cndnum = two
527 END IF
528*
529 IF( mat.EQ.4 ) THEN
530 anorm = small
531 ELSE IF( mat.EQ.5 ) THEN
532 anorm = large
533 ELSE
534 anorm = one
535 END IF
536 END IF
537 IF( n.LE.1 )
538 $ cndnum = one
539*
540 RETURN
541*
542* End of ZLATB4
543*
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:69
logical function lsamen(N, CA, CB)
LSAMEN
Definition: lsamen.f:74
subroutine dlabad(SMALL, LARGE)
DLABAD
Definition: dlabad.f:74
Here is the call graph for this function:
Here is the caller graph for this function: