LAPACK  3.10.1 LAPACK: Linear Algebra PACKage

## ◆ zdrvhe_aa()

 subroutine zdrvhe_aa ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NRHS, double precision THRESH, logical TSTERR, integer NMAX, complex*16, dimension( * ) A, complex*16, dimension( * ) AFAC, complex*16, dimension( * ) AINV, complex*16, dimension( * ) B, complex*16, dimension( * ) X, complex*16, dimension( * ) XACT, complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

ZDRVHE_AA

Purpose:
` ZDRVHE_AA tests the driver routine ZHESV_AA.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NRHS ``` NRHS is INTEGER The number of right hand side vectors to be generated for each linear system.``` [in] THRESH ``` THRESH is DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] AINV ` AINV is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] B ` B is COMPLEX*16 array, dimension (NMAX*NRHS)` [out] X ` X is COMPLEX*16 array, dimension (NMAX*NRHS)` [out] XACT ` XACT is COMPLEX*16 array, dimension (NMAX*NRHS)` [out] WORK ` WORK is COMPLEX*16 array, dimension (NMAX*max(2,NRHS))` [out] RWORK ` RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)` [out] IWORK ` IWORK is INTEGER array, dimension (NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```

Definition at line 150 of file zdrvhe_aa.f.

153 *
154 * -- LAPACK test routine --
155 * -- LAPACK is a software package provided by Univ. of Tennessee, --
156 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
157 *
158 * .. Scalar Arguments ..
159  LOGICAL TSTERR
160  INTEGER NMAX, NN, NOUT, NRHS
161  DOUBLE PRECISION THRESH
162 * ..
163 * .. Array Arguments ..
164  LOGICAL DOTYPE( * )
165  INTEGER IWORK( * ), NVAL( * )
166  DOUBLE PRECISION RWORK( * )
167  COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
168  \$ WORK( * ), X( * ), XACT( * )
169 * ..
170 *
171 * =====================================================================
172 *
173 * .. Parameters ..
174  DOUBLE PRECISION ONE, ZERO
175  parameter( one = 1.0d+0, zero = 0.0d+0 )
176  INTEGER NTYPES, NTESTS
177  parameter( ntypes = 10, ntests = 3 )
178  INTEGER NFACT
179  parameter( nfact = 2 )
180 * ..
181 * .. Local Scalars ..
182  LOGICAL ZEROT
183  CHARACTER DIST, FACT, TYPE, UPLO, XTYPE
184  CHARACTER*3 MATPATH, PATH
185  INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
186  \$ IZERO, J, K, KL, KU, LDA, LWORK, MODE, N,
187  \$ NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT
188  DOUBLE PRECISION ANORM, CNDNUM
189 * ..
190 * .. Local Arrays ..
191  CHARACTER FACTS( NFACT ), UPLOS( 2 )
192  INTEGER ISEED( 4 ), ISEEDY( 4 )
193  DOUBLE PRECISION RESULT( NTESTS )
194 * ..
195 * .. External Functions ..
196  DOUBLE PRECISION DGET06, ZLANHE
197  EXTERNAL dget06, zlanhe
198 * ..
199 * .. External Subroutines ..
200  EXTERNAL aladhd, alaerh, alasvm, xlaenv, zerrvx, zget04,
203  \$ zlatms, zpot02
204 * ..
205 * .. Scalars in Common ..
206  LOGICAL LERR, OK
207  CHARACTER*32 SRNAMT
208  INTEGER INFOT, NUNIT
209 * ..
210 * .. Common blocks ..
211  COMMON / infoc / infot, nunit, ok, lerr
212  COMMON / srnamc / srnamt
213 * ..
214 * .. Intrinsic Functions ..
215  INTRINSIC dcmplx, max, min
216 * ..
217 * .. Data statements ..
218  DATA iseedy / 1988, 1989, 1990, 1991 /
219  DATA uplos / 'U', 'L' / , facts / 'F', 'N' /
220 * ..
221 * .. Executable Statements ..
222 *
223 * Initialize constants and the random number seed.
224 *
225 * Test path
226 *
227  path( 1: 1 ) = 'Zomplex precision'
228  path( 2: 3 ) = 'HA'
229 *
230 * Path to generate matrices
231 *
232  matpath( 1: 1 ) = 'Zomplex precision'
233  matpath( 2: 3 ) = 'HE'
234 *
235  nrun = 0
236  nfail = 0
237  nerrs = 0
238  DO 10 i = 1, 4
239  iseed( i ) = iseedy( i )
240  10 CONTINUE
241 *
242 * Test the error exits
243 *
244  IF( tsterr )
245  \$ CALL zerrvx( path, nout )
246  infot = 0
247 *
248 * Set the block size and minimum block size for testing.
249 *
250  nb = 1
251  nbmin = 2
252  CALL xlaenv( 1, nb )
253  CALL xlaenv( 2, nbmin )
254 *
255 * Do for each value of N in NVAL
256 *
257  DO 180 in = 1, nn
258  n = nval( in )
259  lwork = max( 3*n-2, n*(1+nb) )
260  lwork = max( lwork, 1 )
261  lda = max( n, 1 )
262  xtype = 'N'
263  nimat = ntypes
264  IF( n.LE.0 )
265  \$ nimat = 1
266 *
267  DO 170 imat = 1, nimat
268 *
269 * Do the tests only if DOTYPE( IMAT ) is true.
270 *
271  IF( .NOT.dotype( imat ) )
272  \$ GO TO 170
273 *
274 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
275 *
276  zerot = imat.GE.3 .AND. imat.LE.6
277  IF( zerot .AND. n.LT.imat-2 )
278  \$ GO TO 170
279 *
280 * Do first for UPLO = 'U', then for UPLO = 'L'
281 *
282  DO 160 iuplo = 1, 2
283  uplo = uplos( iuplo )
284 *
285 * Begin generate the test matrix A.
286 *
287 * Set up parameters with ZLATB4 and generate a test matrix
288 * with ZLATMS.
289 *
290  CALL zlatb4( matpath, imat, n, n, TYPE, KL, KU, ANORM,
291  \$ MODE, CNDNUM, DIST )
292 *
293  srnamt = 'ZLATMS'
294  CALL zlatms( n, n, dist, iseed, TYPE, RWORK, MODE,
295  \$ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
296  \$ INFO )
297 *
298 * Check error code from ZLATMS.
299 *
300  IF( info.NE.0 ) THEN
301  CALL alaerh( path, 'ZLATMS', info, 0, uplo, n, n, -1,
302  \$ -1, -1, imat, nfail, nerrs, nout )
303  GO TO 160
304  END IF
305 *
306 * For types 3-6, zero one or more rows and columns of the
307 * matrix to test that INFO is returned correctly.
308 *
309  IF( zerot ) THEN
310  IF( imat.EQ.3 ) THEN
311  izero = 1
312  ELSE IF( imat.EQ.4 ) THEN
313  izero = n
314  ELSE
315  izero = n / 2 + 1
316  END IF
317 *
318  IF( imat.LT.6 ) THEN
319 *
320 * Set row and column IZERO to zero.
321 *
322  IF( iuplo.EQ.1 ) THEN
323  ioff = ( izero-1 )*lda
324  DO 20 i = 1, izero - 1
325  a( ioff+i ) = zero
326  20 CONTINUE
327  ioff = ioff + izero
328  DO 30 i = izero, n
329  a( ioff ) = zero
330  ioff = ioff + lda
331  30 CONTINUE
332  ELSE
333  ioff = izero
334  DO 40 i = 1, izero - 1
335  a( ioff ) = zero
336  ioff = ioff + lda
337  40 CONTINUE
338  ioff = ioff - izero
339  DO 50 i = izero, n
340  a( ioff+i ) = zero
341  50 CONTINUE
342  END IF
343  ELSE
344  ioff = 0
345  IF( iuplo.EQ.1 ) THEN
346 *
347 * Set the first IZERO rows and columns to zero.
348 *
349  DO 70 j = 1, n
350  i2 = min( j, izero )
351  DO 60 i = 1, i2
352  a( ioff+i ) = zero
353  60 CONTINUE
354  ioff = ioff + lda
355  70 CONTINUE
356  izero = 1
357  ELSE
358 *
359 * Set the last IZERO rows and columns to zero.
360 *
361  DO 90 j = 1, n
362  i1 = max( j, izero )
363  DO 80 i = i1, n
364  a( ioff+i ) = zero
365  80 CONTINUE
366  ioff = ioff + lda
367  90 CONTINUE
368  END IF
369  END IF
370  ELSE
371  izero = 0
372  END IF
373 *
374 * Set the imaginary part of the diagonals.
375 *
376  CALL zlaipd( n, a, lda+1, 0 )
377 *
378  DO 150 ifact = 1, nfact
379 *
380 * Do first for FACT = 'F', then for other values.
381 *
382  fact = facts( ifact )
383 *
384 * Form an exact solution and set the right hand side.
385 *
386  srnamt = 'ZLARHS'
387  CALL zlarhs( matpath, xtype, uplo, ' ', n, n, kl, ku,
388  \$ nrhs, a, lda, xact, lda, b, lda, iseed,
389  \$ info )
390  xtype = 'C'
391 *
392 * --- Test ZHESV_AA ---
393 *
394  IF( ifact.EQ.2 ) THEN
395  CALL zlacpy( uplo, n, n, a, lda, afac, lda )
396  CALL zlacpy( 'Full', n, nrhs, b, lda, x, lda )
397 *
398 * Factor the matrix and solve the system using ZHESV.
399 *
400  srnamt = 'ZHESV_AA '
401  CALL zhesv_aa( uplo, n, nrhs, afac, lda, iwork,
402  \$ x, lda, work, lwork, info )
403 *
404 * Adjust the expected value of INFO to account for
405 * pivoting.
406 *
407  IF( izero.GT.0 ) THEN
408  j = 1
409  k = izero
410  100 CONTINUE
411  IF( j.EQ.k ) THEN
412  k = iwork( j )
413  ELSE IF( iwork( j ).EQ.k ) THEN
414  k = j
415  END IF
416  IF( j.LT.k ) THEN
417  j = j + 1
418  GO TO 100
419  END IF
420  ELSE
421  k = 0
422  END IF
423 *
424 * Check error code from ZHESV .
425 *
426  IF( info.NE.k ) THEN
427  CALL alaerh( path, 'ZHESV_AA', info, k, uplo, n,
428  \$ n, -1, -1, nrhs, imat, nfail,
429  \$ nerrs, nout )
430  GO TO 120
431  ELSE IF( info.NE.0 ) THEN
432  GO TO 120
433  END IF
434 *
435 * Reconstruct matrix from factors and compute
436 * residual.
437 *
438  CALL zhet01_aa( uplo, n, a, lda, afac, lda,
439  \$ iwork, ainv, lda, rwork,
440  \$ result( 1 ) )
441 *
442 * Compute residual of the computed solution.
443 *
444  CALL zlacpy( 'Full', n, nrhs, b, lda, work, lda )
445  CALL zpot02( uplo, n, nrhs, a, lda, x, lda, work,
446  \$ lda, rwork, result( 2 ) )
447  nt = 2
448 *
449 * Print information about the tests that did not pass
450 * the threshold.
451 *
452  DO 110 k = 1, nt
453  IF( result( k ).GE.thresh ) THEN
454  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
455  \$ CALL aladhd( nout, path )
456  WRITE( nout, fmt = 9999 )'ZHESV_AA', uplo, n,
457  \$ imat, k, result( k )
458  nfail = nfail + 1
459  END IF
460  110 CONTINUE
461  nrun = nrun + nt
462  120 CONTINUE
463  END IF
464 *
465  150 CONTINUE
466 *
467  160 CONTINUE
468  170 CONTINUE
469  180 CONTINUE
470 *
471 * Print a summary of the results.
472 *
473  CALL alasvm( path, nout, nfail, nrun, nerrs )
474 *
475  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
476  \$ ', test ', i2, ', ratio =', g12.5 )
477  RETURN
478 *
479 * End of ZDRVHE_AA
480 *
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine zlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
ZLARHS
Definition: zlarhs.f:208
subroutine zerrvx(PATH, NUNIT)
ZERRVX
Definition: zerrvx.f:55
subroutine zget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
ZGET04
Definition: zget04.f:102
subroutine zlaipd(N, A, INDA, VINDA)
ZLAIPD
Definition: zlaipd.f:83
subroutine zpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
ZPOT02
Definition: zpot02.f:127
subroutine zlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
ZLATB4
Definition: zlatb4.f:121
subroutine zhet01_aa(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
ZHET01_AA
Definition: zhet01_aa.f:124
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
Definition: zlatms.f:332
double precision function zlanhe(NORM, UPLO, N, A, LDA, WORK)
ZLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: zlanhe.f:124
subroutine zhetrf_aa(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
ZHETRF_AA
Definition: zhetrf_aa.f:132
subroutine zhetri2(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
ZHETRI2
Definition: zhetri2.f:127
subroutine zhesv_aa(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
ZHESV_AA computes the solution to system of linear equations A * X = B for HE matrices
Definition: zhesv_aa.f:162
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
double precision function dget06(RCOND, RCONDC)
DGET06
Definition: dget06.f:55
Here is the call graph for this function:
Here is the caller graph for this function: