LAPACK 3.11.0 LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

## ◆ zdrvhe_rook()

 subroutine zdrvhe_rook ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NRHS, double precision THRESH, logical TSTERR, integer NMAX, complex*16, dimension( * ) A, complex*16, dimension( * ) AFAC, complex*16, dimension( * ) AINV, complex*16, dimension( * ) B, complex*16, dimension( * ) X, complex*16, dimension( * ) XACT, complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

ZDRVHE_ROOK

Purpose:
` ZDRVHE_ROOK tests the driver routines ZHESV_ROOK.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NRHS ``` NRHS is INTEGER The number of right hand side vectors to be generated for each linear system.``` [in] THRESH ``` THRESH is DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] AINV ` AINV is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] B ` B is COMPLEX*16 array, dimension (NMAX*NRHS)` [out] X ` X is COMPLEX*16 array, dimension (NMAX*NRHS)` [out] XACT ` XACT is COMPLEX*16 array, dimension (NMAX*NRHS)` [out] WORK ` WORK is COMPLEX*16 array, dimension (NMAX*max(2,NRHS))` [out] RWORK ` RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)` [out] IWORK ` IWORK is INTEGER array, dimension (NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```

Definition at line 150 of file zdrvhe_rook.f.

153*
154* -- LAPACK test routine --
155* -- LAPACK is a software package provided by Univ. of Tennessee, --
156* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
157*
158* .. Scalar Arguments ..
159 LOGICAL TSTERR
160 INTEGER NMAX, NN, NOUT, NRHS
161 DOUBLE PRECISION THRESH
162* ..
163* .. Array Arguments ..
164 LOGICAL DOTYPE( * )
165 INTEGER IWORK( * ), NVAL( * )
166 DOUBLE PRECISION RWORK( * )
167 COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
168 \$ WORK( * ), X( * ), XACT( * )
169* ..
170*
171* =====================================================================
172*
173* .. Parameters ..
174 DOUBLE PRECISION ONE, ZERO
175 parameter( one = 1.0d+0, zero = 0.0d+0 )
176 INTEGER NTYPES, NTESTS
177 parameter( ntypes = 10, ntests = 3 )
178 INTEGER NFACT
179 parameter( nfact = 2 )
180* ..
181* .. Local Scalars ..
182 LOGICAL ZEROT
183 CHARACTER DIST, FACT, TYPE, UPLO, XTYPE
184 CHARACTER*3 MATPATH, PATH
185 INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
186 \$ IZERO, J, K, KL, KU, LDA, LWORK, MODE, N,
187 \$ NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT
188 DOUBLE PRECISION AINVNM, ANORM, CNDNUM, RCONDC
189* ..
190* .. Local Arrays ..
191 CHARACTER FACTS( NFACT ), UPLOS( 2 )
192 INTEGER ISEED( 4 ), ISEEDY( 4 )
193 DOUBLE PRECISION RESULT( NTESTS )
194
195* ..
196* .. External Functions ..
197 DOUBLE PRECISION ZLANHE
198 EXTERNAL zlanhe
199* ..
200* .. External Subroutines ..
201 EXTERNAL aladhd, alaerh, alasvm, xlaenv, zerrvx,
205* ..
206* .. Scalars in Common ..
207 LOGICAL LERR, OK
208 CHARACTER*32 SRNAMT
209 INTEGER INFOT, NUNIT
210* ..
211* .. Common blocks ..
212 COMMON / infoc / infot, nunit, ok, lerr
213 COMMON / srnamc / srnamt
214* ..
215* .. Intrinsic Functions ..
216 INTRINSIC max, min
217* ..
218* .. Data statements ..
219 DATA iseedy / 1988, 1989, 1990, 1991 /
220 DATA uplos / 'U', 'L' / , facts / 'F', 'N' /
221* ..
222* .. Executable Statements ..
223*
224* Initialize constants and the random number seed.
225*
226* Test path
227*
228 path( 1: 1 ) = 'Zomplex precision'
229 path( 2: 3 ) = 'HR'
230*
231* Path to generate matrices
232*
233 matpath( 1: 1 ) = 'Zomplex precision'
234 matpath( 2: 3 ) = 'HE'
235*
236 nrun = 0
237 nfail = 0
238 nerrs = 0
239 DO 10 i = 1, 4
240 iseed( i ) = iseedy( i )
241 10 CONTINUE
242 lwork = max( 2*nmax, nmax*nrhs )
243*
244* Test the error exits
245*
246 IF( tsterr )
247 \$ CALL zerrvx( path, nout )
248 infot = 0
249*
250* Set the block size and minimum block size for which the block
251* routine should be used, which will be later returned by ILAENV.
252*
253 nb = 1
254 nbmin = 2
255 CALL xlaenv( 1, nb )
256 CALL xlaenv( 2, nbmin )
257*
258* Do for each value of N in NVAL
259*
260 DO 180 in = 1, nn
261 n = nval( in )
262 lda = max( n, 1 )
263 xtype = 'N'
264 nimat = ntypes
265 IF( n.LE.0 )
266 \$ nimat = 1
267*
268 DO 170 imat = 1, nimat
269*
270* Do the tests only if DOTYPE( IMAT ) is true.
271*
272 IF( .NOT.dotype( imat ) )
273 \$ GO TO 170
274*
275* Skip types 3, 4, 5, or 6 if the matrix size is too small.
276*
277 zerot = imat.GE.3 .AND. imat.LE.6
278 IF( zerot .AND. n.LT.imat-2 )
279 \$ GO TO 170
280*
281* Do first for UPLO = 'U', then for UPLO = 'L'
282*
283 DO 160 iuplo = 1, 2
284 uplo = uplos( iuplo )
285*
286* Begin generate the test matrix A.
287*
288* Set up parameters with ZLATB4 for the matrix generator
289* based on the type of matrix to be generated.
290*
291 CALL zlatb4( matpath, imat, n, n, TYPE, KL, KU, ANORM,
292 \$ MODE, CNDNUM, DIST )
293*
294* Generate a matrix with ZLATMS.
295*
296 srnamt = 'ZLATMS'
297 CALL zlatms( n, n, dist, iseed, TYPE, RWORK, MODE,
298 \$ CNDNUM, ANORM, KL, KU, UPLO, A, LDA,
299 \$ WORK, INFO )
300*
301* Check error code from ZLATMS and handle error.
302*
303 IF( info.NE.0 ) THEN
304 CALL alaerh( path, 'ZLATMS', info, 0, uplo, n, n,
305 \$ -1, -1, -1, imat, nfail, nerrs, nout )
306 GO TO 160
307 END IF
308*
309* For types 3-6, zero one or more rows and columns of
310* the matrix to test that INFO is returned correctly.
311*
312 IF( zerot ) THEN
313 IF( imat.EQ.3 ) THEN
314 izero = 1
315 ELSE IF( imat.EQ.4 ) THEN
316 izero = n
317 ELSE
318 izero = n / 2 + 1
319 END IF
320*
321 IF( imat.LT.6 ) THEN
322*
323* Set row and column IZERO to zero.
324*
325 IF( iuplo.EQ.1 ) THEN
326 ioff = ( izero-1 )*lda
327 DO 20 i = 1, izero - 1
328 a( ioff+i ) = zero
329 20 CONTINUE
330 ioff = ioff + izero
331 DO 30 i = izero, n
332 a( ioff ) = zero
333 ioff = ioff + lda
334 30 CONTINUE
335 ELSE
336 ioff = izero
337 DO 40 i = 1, izero - 1
338 a( ioff ) = zero
339 ioff = ioff + lda
340 40 CONTINUE
341 ioff = ioff - izero
342 DO 50 i = izero, n
343 a( ioff+i ) = zero
344 50 CONTINUE
345 END IF
346 ELSE
347 IF( iuplo.EQ.1 ) THEN
348*
349* Set the first IZERO rows and columns to zero.
350*
351 ioff = 0
352 DO 70 j = 1, n
353 i2 = min( j, izero )
354 DO 60 i = 1, i2
355 a( ioff+i ) = zero
356 60 CONTINUE
357 ioff = ioff + lda
358 70 CONTINUE
359 ELSE
360*
361* Set the first IZERO rows and columns to zero.
362*
363 ioff = 0
364 DO 90 j = 1, n
365 i1 = max( j, izero )
366 DO 80 i = i1, n
367 a( ioff+i ) = zero
368 80 CONTINUE
369 ioff = ioff + lda
370 90 CONTINUE
371 END IF
372 END IF
373 ELSE
374 izero = 0
375 END IF
376*
377* End generate the test matrix A.
378*
379*
380 DO 150 ifact = 1, nfact
381*
382* Do first for FACT = 'F', then for other values.
383*
384 fact = facts( ifact )
385*
386* Compute the condition number for comparison with
387* the value returned by ZHESVX_ROOK.
388*
389 IF( zerot ) THEN
390 IF( ifact.EQ.1 )
391 \$ GO TO 150
392 rcondc = zero
393*
394 ELSE IF( ifact.EQ.1 ) THEN
395*
396* Compute the 1-norm of A.
397*
398 anorm = zlanhe( '1', uplo, n, a, lda, rwork )
399*
400* Factor the matrix A.
401*
402
403 CALL zlacpy( uplo, n, n, a, lda, afac, lda )
404 CALL zhetrf_rook( uplo, n, afac, lda, iwork, work,
405 \$ lwork, info )
406*
407* Compute inv(A) and take its norm.
408*
409 CALL zlacpy( uplo, n, n, afac, lda, ainv, lda )
410 lwork = (n+nb+1)*(nb+3)
411 CALL zhetri_rook( uplo, n, ainv, lda, iwork,
412 \$ work, info )
413 ainvnm = zlanhe( '1', uplo, n, ainv, lda, rwork )
414*
415* Compute the 1-norm condition number of A.
416*
417 IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
418 rcondc = one
419 ELSE
420 rcondc = ( one / anorm ) / ainvnm
421 END IF
422 END IF
423*
424* Form an exact solution and set the right hand side.
425*
426 srnamt = 'ZLARHS'
427 CALL zlarhs( matpath, xtype, uplo, ' ', n, n, kl, ku,
428 \$ nrhs, a, lda, xact, lda, b, lda, iseed,
429 \$ info )
430 xtype = 'C'
431*
432* --- Test ZHESV_ROOK ---
433*
434 IF( ifact.EQ.2 ) THEN
435 CALL zlacpy( uplo, n, n, a, lda, afac, lda )
436 CALL zlacpy( 'Full', n, nrhs, b, lda, x, lda )
437*
438* Factor the matrix and solve the system using
439* ZHESV_ROOK.
440*
441 srnamt = 'ZHESV_ROOK'
442 CALL zhesv_rook( uplo, n, nrhs, afac, lda, iwork,
443 \$ x, lda, work, lwork, info )
444*
445* Adjust the expected value of INFO to account for
446* pivoting.
447*
448 k = izero
449 IF( k.GT.0 ) THEN
450 100 CONTINUE
451 IF( iwork( k ).LT.0 ) THEN
452 IF( iwork( k ).NE.-k ) THEN
453 k = -iwork( k )
454 GO TO 100
455 END IF
456 ELSE IF( iwork( k ).NE.k ) THEN
457 k = iwork( k )
458 GO TO 100
459 END IF
460 END IF
461*
462* Check error code from ZHESV_ROOK and handle error.
463*
464 IF( info.NE.k ) THEN
465 CALL alaerh( path, 'ZHESV_ROOK', info, k, uplo,
466 \$ n, n, -1, -1, nrhs, imat, nfail,
467 \$ nerrs, nout )
468 GO TO 120
469 ELSE IF( info.NE.0 ) THEN
470 GO TO 120
471 END IF
472*
473*+ TEST 1 Reconstruct matrix from factors and compute
474* residual.
475*
476 CALL zhet01_rook( uplo, n, a, lda, afac, lda,
477 \$ iwork, ainv, lda, rwork,
478 \$ result( 1 ) )
479*
480*+ TEST 2 Compute residual of the computed solution.
481*
482 CALL zlacpy( 'Full', n, nrhs, b, lda, work, lda )
483 CALL zpot02( uplo, n, nrhs, a, lda, x, lda, work,
484 \$ lda, rwork, result( 2 ) )
485*
486*+ TEST 3
487* Check solution from generated exact solution.
488*
489 CALL zget04( n, nrhs, x, lda, xact, lda, rcondc,
490 \$ result( 3 ) )
491 nt = 3
492*
493* Print information about the tests that did not pass
494* the threshold.
495*
496 DO 110 k = 1, nt
497 IF( result( k ).GE.thresh ) THEN
498 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
499 \$ CALL aladhd( nout, path )
500 WRITE( nout, fmt = 9999 )'ZHESV_ROOK', uplo,
501 \$ n, imat, k, result( k )
502 nfail = nfail + 1
503 END IF
504 110 CONTINUE
505 nrun = nrun + nt
506 120 CONTINUE
507 END IF
508*
509 150 CONTINUE
510*
511 160 CONTINUE
512 170 CONTINUE
513 180 CONTINUE
514*
515* Print a summary of the results.
516*
517 CALL alasvm( path, nout, nfail, nrun, nerrs )
518*
519 9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
520 \$ ', test ', i2, ', ratio =', g12.5 )
521 RETURN
522*
523* End of ZDRVHE_ROOK
524*
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine aladhd(IOUNIT, PATH)
ALADHD
Definition: aladhd.f:90
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine zlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
ZLARHS
Definition: zlarhs.f:208
subroutine zhet01_rook(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
ZHET01_ROOK
Definition: zhet01_rook.f:125
subroutine zerrvx(PATH, NUNIT)
ZERRVX
Definition: zerrvx.f:55
subroutine zget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
ZGET04
Definition: zget04.f:102
subroutine zpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
ZPOT02
Definition: zpot02.f:127
subroutine zlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
ZLATB4
Definition: zlatb4.f:121
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
Definition: zlatms.f:332
double precision function zlanhe(NORM, UPLO, N, A, LDA, WORK)
ZLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: zlanhe.f:124
subroutine zhetri_rook(UPLO, N, A, LDA, IPIV, WORK, INFO)
ZHETRI_ROOK computes the inverse of HE matrix using the factorization obtained with the bounded Bunch...
Definition: zhetri_rook.f:128
subroutine zhetrf_rook(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
ZHETRF_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bun...
Definition: zhetrf_rook.f:212
subroutine zhesv_rook(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
ZHESV_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using the ...
Definition: zhesv_rook.f:205
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
Here is the call graph for this function:
Here is the caller graph for this function: