LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zerrpo()

subroutine zerrpo ( character*3  PATH,
integer  NUNIT 
)

ZERRPO

ZERRPOX

Purpose:
 ZERRPO tests the error exits for the COMPLEX*16 routines
 for Hermitian positive definite matrices.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Purpose:
 ZERRPO tests the error exits for the COMPLEX*16 routines
 for Hermitian positive definite matrices.

 Note that this file is used only when the XBLAS are available,
 otherwise zerrpo.f defines this subroutine.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 54 of file zerrpo.f.

55*
56* -- LAPACK test routine --
57* -- LAPACK is a software package provided by Univ. of Tennessee, --
58* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
59*
60* .. Scalar Arguments ..
61 CHARACTER*3 PATH
62 INTEGER NUNIT
63* ..
64*
65* =====================================================================
66*
67* .. Parameters ..
68 INTEGER NMAX
69 parameter( nmax = 4 )
70* ..
71* .. Local Scalars ..
72 CHARACTER*2 C2
73 INTEGER I, INFO, J
74 DOUBLE PRECISION ANRM, RCOND
75* ..
76* .. Local Arrays ..
77 DOUBLE PRECISION R( NMAX ), R1( NMAX ), R2( NMAX )
78 COMPLEX*16 A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
79 $ W( 2*NMAX ), X( NMAX )
80* ..
81* .. External Functions ..
82 LOGICAL LSAMEN
83 EXTERNAL lsamen
84* ..
85* .. External Subroutines ..
86 EXTERNAL alaesm, chkxer, zpbcon, zpbequ, zpbrfs, zpbtf2,
90* ..
91* .. Scalars in Common ..
92 LOGICAL LERR, OK
93 CHARACTER*32 SRNAMT
94 INTEGER INFOT, NOUT
95* ..
96* .. Common blocks ..
97 COMMON / infoc / infot, nout, ok, lerr
98 COMMON / srnamc / srnamt
99* ..
100* .. Intrinsic Functions ..
101 INTRINSIC dble, dcmplx
102* ..
103* .. Executable Statements ..
104*
105 nout = nunit
106 WRITE( nout, fmt = * )
107 c2 = path( 2: 3 )
108*
109* Set the variables to innocuous values.
110*
111 DO 20 j = 1, nmax
112 DO 10 i = 1, nmax
113 a( i, j ) = dcmplx( 1.d0 / dble( i+j ),
114 $ -1.d0 / dble( i+j ) )
115 af( i, j ) = dcmplx( 1.d0 / dble( i+j ),
116 $ -1.d0 / dble( i+j ) )
117 10 CONTINUE
118 b( j ) = 0.d0
119 r1( j ) = 0.d0
120 r2( j ) = 0.d0
121 w( j ) = 0.d0
122 x( j ) = 0.d0
123 20 CONTINUE
124 anrm = 1.d0
125 ok = .true.
126*
127* Test error exits of the routines that use the Cholesky
128* decomposition of a Hermitian positive definite matrix.
129*
130 IF( lsamen( 2, c2, 'PO' ) ) THEN
131*
132* ZPOTRF
133*
134 srnamt = 'ZPOTRF'
135 infot = 1
136 CALL zpotrf( '/', 0, a, 1, info )
137 CALL chkxer( 'ZPOTRF', infot, nout, lerr, ok )
138 infot = 2
139 CALL zpotrf( 'U', -1, a, 1, info )
140 CALL chkxer( 'ZPOTRF', infot, nout, lerr, ok )
141 infot = 4
142 CALL zpotrf( 'U', 2, a, 1, info )
143 CALL chkxer( 'ZPOTRF', infot, nout, lerr, ok )
144*
145* ZPOTF2
146*
147 srnamt = 'ZPOTF2'
148 infot = 1
149 CALL zpotf2( '/', 0, a, 1, info )
150 CALL chkxer( 'ZPOTF2', infot, nout, lerr, ok )
151 infot = 2
152 CALL zpotf2( 'U', -1, a, 1, info )
153 CALL chkxer( 'ZPOTF2', infot, nout, lerr, ok )
154 infot = 4
155 CALL zpotf2( 'U', 2, a, 1, info )
156 CALL chkxer( 'ZPOTF2', infot, nout, lerr, ok )
157*
158* ZPOTRI
159*
160 srnamt = 'ZPOTRI'
161 infot = 1
162 CALL zpotri( '/', 0, a, 1, info )
163 CALL chkxer( 'ZPOTRI', infot, nout, lerr, ok )
164 infot = 2
165 CALL zpotri( 'U', -1, a, 1, info )
166 CALL chkxer( 'ZPOTRI', infot, nout, lerr, ok )
167 infot = 4
168 CALL zpotri( 'U', 2, a, 1, info )
169 CALL chkxer( 'ZPOTRI', infot, nout, lerr, ok )
170*
171* ZPOTRS
172*
173 srnamt = 'ZPOTRS'
174 infot = 1
175 CALL zpotrs( '/', 0, 0, a, 1, b, 1, info )
176 CALL chkxer( 'ZPOTRS', infot, nout, lerr, ok )
177 infot = 2
178 CALL zpotrs( 'U', -1, 0, a, 1, b, 1, info )
179 CALL chkxer( 'ZPOTRS', infot, nout, lerr, ok )
180 infot = 3
181 CALL zpotrs( 'U', 0, -1, a, 1, b, 1, info )
182 CALL chkxer( 'ZPOTRS', infot, nout, lerr, ok )
183 infot = 5
184 CALL zpotrs( 'U', 2, 1, a, 1, b, 2, info )
185 CALL chkxer( 'ZPOTRS', infot, nout, lerr, ok )
186 infot = 7
187 CALL zpotrs( 'U', 2, 1, a, 2, b, 1, info )
188 CALL chkxer( 'ZPOTRS', infot, nout, lerr, ok )
189*
190* ZPORFS
191*
192 srnamt = 'ZPORFS'
193 infot = 1
194 CALL zporfs( '/', 0, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w, r,
195 $ info )
196 CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
197 infot = 2
198 CALL zporfs( 'U', -1, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w, r,
199 $ info )
200 CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
201 infot = 3
202 CALL zporfs( 'U', 0, -1, a, 1, af, 1, b, 1, x, 1, r1, r2, w, r,
203 $ info )
204 CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
205 infot = 5
206 CALL zporfs( 'U', 2, 1, a, 1, af, 2, b, 2, x, 2, r1, r2, w, r,
207 $ info )
208 CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
209 infot = 7
210 CALL zporfs( 'U', 2, 1, a, 2, af, 1, b, 2, x, 2, r1, r2, w, r,
211 $ info )
212 CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
213 infot = 9
214 CALL zporfs( 'U', 2, 1, a, 2, af, 2, b, 1, x, 2, r1, r2, w, r,
215 $ info )
216 CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
217 infot = 11
218 CALL zporfs( 'U', 2, 1, a, 2, af, 2, b, 2, x, 1, r1, r2, w, r,
219 $ info )
220 CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
221*
222* ZPOCON
223*
224 srnamt = 'ZPOCON'
225 infot = 1
226 CALL zpocon( '/', 0, a, 1, anrm, rcond, w, r, info )
227 CALL chkxer( 'ZPOCON', infot, nout, lerr, ok )
228 infot = 2
229 CALL zpocon( 'U', -1, a, 1, anrm, rcond, w, r, info )
230 CALL chkxer( 'ZPOCON', infot, nout, lerr, ok )
231 infot = 4
232 CALL zpocon( 'U', 2, a, 1, anrm, rcond, w, r, info )
233 CALL chkxer( 'ZPOCON', infot, nout, lerr, ok )
234 infot = 5
235 CALL zpocon( 'U', 1, a, 1, -anrm, rcond, w, r, info )
236 CALL chkxer( 'ZPOCON', infot, nout, lerr, ok )
237*
238* ZPOEQU
239*
240 srnamt = 'ZPOEQU'
241 infot = 1
242 CALL zpoequ( -1, a, 1, r1, rcond, anrm, info )
243 CALL chkxer( 'ZPOEQU', infot, nout, lerr, ok )
244 infot = 3
245 CALL zpoequ( 2, a, 1, r1, rcond, anrm, info )
246 CALL chkxer( 'ZPOEQU', infot, nout, lerr, ok )
247*
248* Test error exits of the routines that use the Cholesky
249* decomposition of a Hermitian positive definite packed matrix.
250*
251 ELSE IF( lsamen( 2, c2, 'PP' ) ) THEN
252*
253* ZPPTRF
254*
255 srnamt = 'ZPPTRF'
256 infot = 1
257 CALL zpptrf( '/', 0, a, info )
258 CALL chkxer( 'ZPPTRF', infot, nout, lerr, ok )
259 infot = 2
260 CALL zpptrf( 'U', -1, a, info )
261 CALL chkxer( 'ZPPTRF', infot, nout, lerr, ok )
262*
263* ZPPTRI
264*
265 srnamt = 'ZPPTRI'
266 infot = 1
267 CALL zpptri( '/', 0, a, info )
268 CALL chkxer( 'ZPPTRI', infot, nout, lerr, ok )
269 infot = 2
270 CALL zpptri( 'U', -1, a, info )
271 CALL chkxer( 'ZPPTRI', infot, nout, lerr, ok )
272*
273* ZPPTRS
274*
275 srnamt = 'ZPPTRS'
276 infot = 1
277 CALL zpptrs( '/', 0, 0, a, b, 1, info )
278 CALL chkxer( 'ZPPTRS', infot, nout, lerr, ok )
279 infot = 2
280 CALL zpptrs( 'U', -1, 0, a, b, 1, info )
281 CALL chkxer( 'ZPPTRS', infot, nout, lerr, ok )
282 infot = 3
283 CALL zpptrs( 'U', 0, -1, a, b, 1, info )
284 CALL chkxer( 'ZPPTRS', infot, nout, lerr, ok )
285 infot = 6
286 CALL zpptrs( 'U', 2, 1, a, b, 1, info )
287 CALL chkxer( 'ZPPTRS', infot, nout, lerr, ok )
288*
289* ZPPRFS
290*
291 srnamt = 'ZPPRFS'
292 infot = 1
293 CALL zpprfs( '/', 0, 0, a, af, b, 1, x, 1, r1, r2, w, r, info )
294 CALL chkxer( 'ZPPRFS', infot, nout, lerr, ok )
295 infot = 2
296 CALL zpprfs( 'U', -1, 0, a, af, b, 1, x, 1, r1, r2, w, r,
297 $ info )
298 CALL chkxer( 'ZPPRFS', infot, nout, lerr, ok )
299 infot = 3
300 CALL zpprfs( 'U', 0, -1, a, af, b, 1, x, 1, r1, r2, w, r,
301 $ info )
302 CALL chkxer( 'ZPPRFS', infot, nout, lerr, ok )
303 infot = 7
304 CALL zpprfs( 'U', 2, 1, a, af, b, 1, x, 2, r1, r2, w, r, info )
305 CALL chkxer( 'ZPPRFS', infot, nout, lerr, ok )
306 infot = 9
307 CALL zpprfs( 'U', 2, 1, a, af, b, 2, x, 1, r1, r2, w, r, info )
308 CALL chkxer( 'ZPPRFS', infot, nout, lerr, ok )
309*
310* ZPPCON
311*
312 srnamt = 'ZPPCON'
313 infot = 1
314 CALL zppcon( '/', 0, a, anrm, rcond, w, r, info )
315 CALL chkxer( 'ZPPCON', infot, nout, lerr, ok )
316 infot = 2
317 CALL zppcon( 'U', -1, a, anrm, rcond, w, r, info )
318 CALL chkxer( 'ZPPCON', infot, nout, lerr, ok )
319 infot = 4
320 CALL zppcon( 'U', 1, a, -anrm, rcond, w, r, info )
321 CALL chkxer( 'ZPPCON', infot, nout, lerr, ok )
322*
323* ZPPEQU
324*
325 srnamt = 'ZPPEQU'
326 infot = 1
327 CALL zppequ( '/', 0, a, r1, rcond, anrm, info )
328 CALL chkxer( 'ZPPEQU', infot, nout, lerr, ok )
329 infot = 2
330 CALL zppequ( 'U', -1, a, r1, rcond, anrm, info )
331 CALL chkxer( 'ZPPEQU', infot, nout, lerr, ok )
332*
333* Test error exits of the routines that use the Cholesky
334* decomposition of a Hermitian positive definite band matrix.
335*
336 ELSE IF( lsamen( 2, c2, 'PB' ) ) THEN
337*
338* ZPBTRF
339*
340 srnamt = 'ZPBTRF'
341 infot = 1
342 CALL zpbtrf( '/', 0, 0, a, 1, info )
343 CALL chkxer( 'ZPBTRF', infot, nout, lerr, ok )
344 infot = 2
345 CALL zpbtrf( 'U', -1, 0, a, 1, info )
346 CALL chkxer( 'ZPBTRF', infot, nout, lerr, ok )
347 infot = 3
348 CALL zpbtrf( 'U', 1, -1, a, 1, info )
349 CALL chkxer( 'ZPBTRF', infot, nout, lerr, ok )
350 infot = 5
351 CALL zpbtrf( 'U', 2, 1, a, 1, info )
352 CALL chkxer( 'ZPBTRF', infot, nout, lerr, ok )
353*
354* ZPBTF2
355*
356 srnamt = 'ZPBTF2'
357 infot = 1
358 CALL zpbtf2( '/', 0, 0, a, 1, info )
359 CALL chkxer( 'ZPBTF2', infot, nout, lerr, ok )
360 infot = 2
361 CALL zpbtf2( 'U', -1, 0, a, 1, info )
362 CALL chkxer( 'ZPBTF2', infot, nout, lerr, ok )
363 infot = 3
364 CALL zpbtf2( 'U', 1, -1, a, 1, info )
365 CALL chkxer( 'ZPBTF2', infot, nout, lerr, ok )
366 infot = 5
367 CALL zpbtf2( 'U', 2, 1, a, 1, info )
368 CALL chkxer( 'ZPBTF2', infot, nout, lerr, ok )
369*
370* ZPBTRS
371*
372 srnamt = 'ZPBTRS'
373 infot = 1
374 CALL zpbtrs( '/', 0, 0, 0, a, 1, b, 1, info )
375 CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
376 infot = 2
377 CALL zpbtrs( 'U', -1, 0, 0, a, 1, b, 1, info )
378 CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
379 infot = 3
380 CALL zpbtrs( 'U', 1, -1, 0, a, 1, b, 1, info )
381 CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
382 infot = 4
383 CALL zpbtrs( 'U', 0, 0, -1, a, 1, b, 1, info )
384 CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
385 infot = 6
386 CALL zpbtrs( 'U', 2, 1, 1, a, 1, b, 1, info )
387 CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
388 infot = 8
389 CALL zpbtrs( 'U', 2, 0, 1, a, 1, b, 1, info )
390 CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
391*
392* ZPBRFS
393*
394 srnamt = 'ZPBRFS'
395 infot = 1
396 CALL zpbrfs( '/', 0, 0, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w,
397 $ r, info )
398 CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
399 infot = 2
400 CALL zpbrfs( 'U', -1, 0, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w,
401 $ r, info )
402 CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
403 infot = 3
404 CALL zpbrfs( 'U', 1, -1, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w,
405 $ r, info )
406 CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
407 infot = 4
408 CALL zpbrfs( 'U', 0, 0, -1, a, 1, af, 1, b, 1, x, 1, r1, r2, w,
409 $ r, info )
410 CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
411 infot = 6
412 CALL zpbrfs( 'U', 2, 1, 1, a, 1, af, 2, b, 2, x, 2, r1, r2, w,
413 $ r, info )
414 CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
415 infot = 8
416 CALL zpbrfs( 'U', 2, 1, 1, a, 2, af, 1, b, 2, x, 2, r1, r2, w,
417 $ r, info )
418 CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
419 infot = 10
420 CALL zpbrfs( 'U', 2, 0, 1, a, 1, af, 1, b, 1, x, 2, r1, r2, w,
421 $ r, info )
422 CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
423 infot = 12
424 CALL zpbrfs( 'U', 2, 0, 1, a, 1, af, 1, b, 2, x, 1, r1, r2, w,
425 $ r, info )
426 CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
427*
428* ZPBCON
429*
430 srnamt = 'ZPBCON'
431 infot = 1
432 CALL zpbcon( '/', 0, 0, a, 1, anrm, rcond, w, r, info )
433 CALL chkxer( 'ZPBCON', infot, nout, lerr, ok )
434 infot = 2
435 CALL zpbcon( 'U', -1, 0, a, 1, anrm, rcond, w, r, info )
436 CALL chkxer( 'ZPBCON', infot, nout, lerr, ok )
437 infot = 3
438 CALL zpbcon( 'U', 1, -1, a, 1, anrm, rcond, w, r, info )
439 CALL chkxer( 'ZPBCON', infot, nout, lerr, ok )
440 infot = 5
441 CALL zpbcon( 'U', 2, 1, a, 1, anrm, rcond, w, r, info )
442 CALL chkxer( 'ZPBCON', infot, nout, lerr, ok )
443 infot = 6
444 CALL zpbcon( 'U', 1, 0, a, 1, -anrm, rcond, w, r, info )
445 CALL chkxer( 'ZPBCON', infot, nout, lerr, ok )
446*
447* ZPBEQU
448*
449 srnamt = 'ZPBEQU'
450 infot = 1
451 CALL zpbequ( '/', 0, 0, a, 1, r1, rcond, anrm, info )
452 CALL chkxer( 'ZPBEQU', infot, nout, lerr, ok )
453 infot = 2
454 CALL zpbequ( 'U', -1, 0, a, 1, r1, rcond, anrm, info )
455 CALL chkxer( 'ZPBEQU', infot, nout, lerr, ok )
456 infot = 3
457 CALL zpbequ( 'U', 1, -1, a, 1, r1, rcond, anrm, info )
458 CALL chkxer( 'ZPBEQU', infot, nout, lerr, ok )
459 infot = 5
460 CALL zpbequ( 'U', 2, 1, a, 1, r1, rcond, anrm, info )
461 CALL chkxer( 'ZPBEQU', infot, nout, lerr, ok )
462 END IF
463*
464* Print a summary line.
465*
466 CALL alaesm( path, ok, nout )
467*
468 RETURN
469*
470* End of ZERRPO
471*
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
Definition: cblat2.f:3224
logical function lsamen(N, CA, CB)
LSAMEN
Definition: lsamen.f:74
subroutine alaesm(PATH, OK, NOUT)
ALAESM
Definition: alaesm.f:63
subroutine zpbcon(UPLO, N, KD, AB, LDAB, ANORM, RCOND, WORK, RWORK, INFO)
ZPBCON
Definition: zpbcon.f:133
subroutine zpbtf2(UPLO, N, KD, AB, LDAB, INFO)
ZPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (un...
Definition: zpbtf2.f:142
subroutine zppcon(UPLO, N, AP, ANORM, RCOND, WORK, RWORK, INFO)
ZPPCON
Definition: zppcon.f:118
subroutine zpptrs(UPLO, N, NRHS, AP, B, LDB, INFO)
ZPPTRS
Definition: zpptrs.f:108
subroutine zppequ(UPLO, N, AP, S, SCOND, AMAX, INFO)
ZPPEQU
Definition: zppequ.f:117
subroutine zpbrfs(UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZPBRFS
Definition: zpbrfs.f:189
subroutine zpptri(UPLO, N, AP, INFO)
ZPPTRI
Definition: zpptri.f:93
subroutine zpbtrf(UPLO, N, KD, AB, LDAB, INFO)
ZPBTRF
Definition: zpbtrf.f:142
subroutine zpptrf(UPLO, N, AP, INFO)
ZPPTRF
Definition: zpptrf.f:119
subroutine zpprfs(UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZPPRFS
Definition: zpprfs.f:171
subroutine zpbequ(UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFO)
ZPBEQU
Definition: zpbequ.f:130
subroutine zpbtrs(UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO)
ZPBTRS
Definition: zpbtrs.f:121
subroutine zpotf2(UPLO, N, A, LDA, INFO)
ZPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblock...
Definition: zpotf2.f:109
subroutine zpotrs(UPLO, N, NRHS, A, LDA, B, LDB, INFO)
ZPOTRS
Definition: zpotrs.f:110
subroutine zpocon(UPLO, N, A, LDA, ANORM, RCOND, WORK, RWORK, INFO)
ZPOCON
Definition: zpocon.f:121
subroutine zpoequ(N, A, LDA, S, SCOND, AMAX, INFO)
ZPOEQU
Definition: zpoequ.f:113
subroutine zporfs(UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZPORFS
Definition: zporfs.f:183
subroutine zpotri(UPLO, N, A, LDA, INFO)
ZPOTRI
Definition: zpotri.f:95
subroutine zpotrf(UPLO, N, A, LDA, INFO)
ZPOTRF VARIANT: right looking block version of the algorithm, calling Level 3 BLAS.
Definition: zpotrf.f:102
Here is the call graph for this function:
Here is the caller graph for this function: