LAPACK 3.11.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ zchktz()

 subroutine zchktz ( logical, dimension( * ) DOTYPE, integer NM, integer, dimension( * ) MVAL, integer NN, integer, dimension( * ) NVAL, double precision THRESH, logical TSTERR, complex*16, dimension( * ) A, complex*16, dimension( * ) COPYA, double precision, dimension( * ) S, complex*16, dimension( * ) TAU, complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer NOUT )

ZCHKTZ

Purpose:
` ZCHKTZ tests ZTZRZF.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NM ``` NM is INTEGER The number of values of M contained in the vector MVAL.``` [in] MVAL ``` MVAL is INTEGER array, dimension (NM) The values of the matrix row dimension M.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix column dimension N.``` [in] THRESH ``` THRESH is DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [out] A ``` A is COMPLEX*16 array, dimension (MMAX*NMAX) where MMAX is the maximum value of M in MVAL and NMAX is the maximum value of N in NVAL.``` [out] COPYA ` COPYA is COMPLEX*16 array, dimension (MMAX*NMAX)` [out] S ``` S is DOUBLE PRECISION array, dimension (min(MMAX,NMAX))``` [out] TAU ` TAU is COMPLEX*16 array, dimension (MMAX)` [out] WORK ``` WORK is COMPLEX*16 array, dimension (MMAX*NMAX + 4*NMAX + MMAX)``` [out] RWORK ` RWORK is DOUBLE PRECISION array, dimension (2*NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```

Definition at line 135 of file zchktz.f.

137*
138* -- LAPACK test routine --
139* -- LAPACK is a software package provided by Univ. of Tennessee, --
140* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
141*
142* .. Scalar Arguments ..
143 LOGICAL TSTERR
144 INTEGER NM, NN, NOUT
145 DOUBLE PRECISION THRESH
146* ..
147* .. Array Arguments ..
148 LOGICAL DOTYPE( * )
149 INTEGER MVAL( * ), NVAL( * )
150 DOUBLE PRECISION S( * ), RWORK( * )
151 COMPLEX*16 A( * ), COPYA( * ), TAU( * ), WORK( * )
152* ..
153*
154* =====================================================================
155*
156* .. Parameters ..
157 INTEGER NTYPES
158 parameter( ntypes = 3 )
159 INTEGER NTESTS
160 parameter( ntests = 3 )
161 DOUBLE PRECISION ONE, ZERO
162 parameter( one = 1.0d0, zero = 0.0d0 )
163* ..
164* .. Local Scalars ..
165 CHARACTER*3 PATH
166 INTEGER I, IM, IMODE, IN, INFO, K, LDA, LWORK, M,
167 \$ MNMIN, MODE, N, NERRS, NFAIL, NRUN
168 DOUBLE PRECISION EPS
169* ..
170* .. Local Arrays ..
171 INTEGER ISEED( 4 ), ISEEDY( 4 )
172 DOUBLE PRECISION RESULT( NTESTS )
173* ..
174* .. External Functions ..
175 DOUBLE PRECISION DLAMCH, ZQRT12, ZRZT01, ZRZT02
176 EXTERNAL dlamch, zqrt12, zrzt01, zrzt02
177* ..
178* .. External Subroutines ..
179 EXTERNAL alahd, alasum, dlaord, zerrtz, zgeqr2, zlacpy,
181* ..
182* .. Intrinsic Functions ..
183 INTRINSIC dcmplx, max, min
184* ..
185* .. Scalars in Common ..
186 LOGICAL LERR, OK
187 CHARACTER*32 SRNAMT
188 INTEGER INFOT, IOUNIT
189* ..
190* .. Common blocks ..
191 COMMON / infoc / infot, iounit, ok, lerr
192 COMMON / srnamc / srnamt
193* ..
194* .. Data statements ..
195 DATA iseedy / 1988, 1989, 1990, 1991 /
196* ..
197* .. Executable Statements ..
198*
199* Initialize constants and the random number seed.
200*
201 path( 1: 1 ) = 'Zomplex precision'
202 path( 2: 3 ) = 'TZ'
203 nrun = 0
204 nfail = 0
205 nerrs = 0
206 DO 10 i = 1, 4
207 iseed( i ) = iseedy( i )
208 10 CONTINUE
209 eps = dlamch( 'Epsilon' )
210*
211* Test the error exits
212*
213 IF( tsterr )
214 \$ CALL zerrtz( path, nout )
215 infot = 0
216*
217 DO 70 im = 1, nm
218*
219* Do for each value of M in MVAL.
220*
221 m = mval( im )
222 lda = max( 1, m )
223*
224 DO 60 in = 1, nn
225*
226* Do for each value of N in NVAL for which M .LE. N.
227*
228 n = nval( in )
229 mnmin = min( m, n )
230 lwork = max( 1, n*n+4*m+n )
231*
232 IF( m.LE.n ) THEN
233 DO 50 imode = 1, ntypes
234 IF( .NOT.dotype( imode ) )
235 \$ GO TO 50
236*
237* Do for each type of singular value distribution.
238* 0: zero matrix
239* 1: one small singular value
240* 2: exponential distribution
241*
242 mode = imode - 1
243*
244* Test ZTZRQF
245*
246* Generate test matrix of size m by n using
247* singular value distribution indicated by `mode'.
248*
249 IF( mode.EQ.0 ) THEN
250 CALL zlaset( 'Full', m, n, dcmplx( zero ),
251 \$ dcmplx( zero ), a, lda )
252 DO 30 i = 1, mnmin
253 s( i ) = zero
254 30 CONTINUE
255 ELSE
256 CALL zlatms( m, n, 'Uniform', iseed,
257 \$ 'Nonsymmetric', s, imode,
258 \$ one / eps, one, m, n, 'No packing', a,
259 \$ lda, work, info )
260 CALL zgeqr2( m, n, a, lda, work, work( mnmin+1 ),
261 \$ info )
262 CALL zlaset( 'Lower', m-1, n, dcmplx( zero ),
263 \$ dcmplx( zero ), a( 2 ), lda )
264 CALL dlaord( 'Decreasing', mnmin, s, 1 )
265 END IF
266*
267* Save A and its singular values
268*
269 CALL zlacpy( 'All', m, n, a, lda, copya, lda )
270*
271* Call ZTZRZF to reduce the upper trapezoidal matrix to
272* upper triangular form.
273*
274 srnamt = 'ZTZRZF'
275 CALL ztzrzf( m, n, a, lda, tau, work, lwork, info )
276*
277* Compute norm(svd(a) - svd(r))
278*
279 result( 1 ) = zqrt12( m, m, a, lda, s, work,
280 \$ lwork, rwork )
281*
282* Compute norm( A - R*Q )
283*
284 result( 2 ) = zrzt01( m, n, copya, a, lda, tau, work,
285 \$ lwork )
286*
287* Compute norm(Q'*Q - I).
288*
289 result( 3 ) = zrzt02( m, n, a, lda, tau, work, lwork )
290*
291* Print information about the tests that did not pass
292* the threshold.
293*
294 DO 40 k = 1, ntests
295 IF( result( k ).GE.thresh ) THEN
296 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
297 \$ CALL alahd( nout, path )
298 WRITE( nout, fmt = 9999 )m, n, imode, k,
299 \$ result( k )
300 nfail = nfail + 1
301 END IF
302 40 CONTINUE
303 nrun = nrun + 3
304 50 CONTINUE
305 END IF
306 60 CONTINUE
307 70 CONTINUE
308*
309* Print a summary of the results.
310*
311 CALL alasum( path, nout, nfail, nrun, nerrs )
312*
313 9999 FORMAT( ' M =', i5, ', N =', i5, ', type ', i2, ', test ', i2,
314 \$ ', ratio =', g12.5 )
315*
316* End if ZCHKTZ
317*
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:69
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
double precision function zqrt12(M, N, A, LDA, S, WORK, LWORK, RWORK)
ZQRT12
Definition: zqrt12.f:97
subroutine zerrtz(PATH, NUNIT)
ZERRTZ
Definition: zerrtz.f:54
double precision function zrzt02(M, N, AF, LDA, TAU, WORK, LWORK)
ZRZT02
Definition: zrzt02.f:91
double precision function zrzt01(M, N, A, AF, LDA, TAU, WORK, LWORK)
ZRZT01
Definition: zrzt01.f:98
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
Definition: zlatms.f:332
subroutine zgeqr2(M, N, A, LDA, TAU, WORK, INFO)
ZGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Definition: zgeqr2.f:130
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
subroutine zlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: zlaset.f:106
subroutine ztzrzf(M, N, A, LDA, TAU, WORK, LWORK, INFO)
ZTZRZF
Definition: ztzrzf.f:151
subroutine dlaord(JOB, N, X, INCX)
DLAORD
Definition: dlaord.f:73
Here is the call graph for this function:
Here is the caller graph for this function: