LAPACK 3.11.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ zdrvab()

 subroutine zdrvab ( logical, dimension( * ) DOTYPE, integer NM, integer, dimension( * ) MVAL, integer NNS, integer, dimension( * ) NSVAL, double precision THRESH, integer NMAX, complex*16, dimension( * ) A, complex*16, dimension( * ) AFAC, complex*16, dimension( * ) B, complex*16, dimension( * ) X, complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK, complex, dimension( * ) SWORK, integer, dimension( * ) IWORK, integer NOUT )

ZDRVAB

Purpose:
` ZDRVAB tests ZCGESV`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NM ``` NM is INTEGER The number of values of M contained in the vector MVAL.``` [in] MVAL ``` MVAL is INTEGER array, dimension (NM) The values of the matrix row dimension M.``` [in] NNS ``` NNS is INTEGER The number of values of NRHS contained in the vector NSVAL.``` [in] NSVAL ``` NSVAL is INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS.``` [in] THRESH ``` THRESH is DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for M or N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] B ``` B is COMPLEX*16 array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL.``` [out] X ` X is COMPLEX*16 array, dimension (NMAX*NSMAX)` [out] WORK ``` WORK is COMPLEX*16 array, dimension (NMAX*max(3,NSMAX*2))``` [out] RWORK ``` RWORK is DOUBLE PRECISION array, dimension NMAX``` [out] SWORK ``` SWORK is COMPLEX array, dimension (NMAX*(NSMAX+NMAX))``` [out] IWORK ``` IWORK is INTEGER array, dimension NMAX``` [in] NOUT ``` NOUT is INTEGER The unit number for output.```

Definition at line 149 of file zdrvab.f.

152*
153* -- LAPACK test routine --
154* -- LAPACK is a software package provided by Univ. of Tennessee, --
155* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
156*
157* .. Scalar Arguments ..
158 INTEGER NM, NMAX, NNS, NOUT
159 DOUBLE PRECISION THRESH
160* ..
161* .. Array Arguments ..
162 LOGICAL DOTYPE( * )
163 INTEGER MVAL( * ), NSVAL( * ), IWORK( * )
164 DOUBLE PRECISION RWORK( * )
165 COMPLEX SWORK( * )
166 COMPLEX*16 A( * ), AFAC( * ), B( * ),
167 \$ WORK( * ), X( * )
168* ..
169*
170* =====================================================================
171*
172* .. Parameters ..
173 DOUBLE PRECISION ZERO
174 parameter( zero = 0.0d+0 )
175 INTEGER NTYPES
176 parameter( ntypes = 11 )
177 INTEGER NTESTS
178 parameter( ntests = 1 )
179* ..
180* .. Local Scalars ..
181 LOGICAL ZEROT
182 CHARACTER DIST, TRANS, TYPE, XTYPE
183 CHARACTER*3 PATH
184 INTEGER I, IM, IMAT, INFO, IOFF, IRHS,
185 \$ IZERO, KL, KU, LDA, M, MODE, N,
186 \$ NERRS, NFAIL, NIMAT, NRHS, NRUN
187 DOUBLE PRECISION ANORM, CNDNUM
188* ..
189* .. Local Arrays ..
190 INTEGER ISEED( 4 ), ISEEDY( 4 )
191 DOUBLE PRECISION RESULT( NTESTS )
192* ..
193* .. Local Variables ..
194 INTEGER ITER, KASE
195* ..
196* .. External Subroutines ..
197 EXTERNAL alaerh, alahd, zget08, zlacpy, zlarhs, zlaset,
198 \$ zlatb4, zlatms
199* ..
200* .. Intrinsic Functions ..
201 INTRINSIC dcmplx, dble, max, min, sqrt
202* ..
203* .. Scalars in Common ..
204 LOGICAL LERR, OK
205 CHARACTER*32 SRNAMT
206 INTEGER INFOT, NUNIT
207* ..
208* .. Common blocks ..
209 COMMON / infoc / infot, nunit, ok, lerr
210 COMMON / srnamc / srnamt
211* ..
212* .. Data statements ..
213 DATA iseedy / 2006, 2007, 2008, 2009 /
214* ..
215* .. Executable Statements ..
216*
217* Initialize constants and the random number seed.
218*
219 kase = 0
220 path( 1: 1 ) = 'Zomplex precision'
221 path( 2: 3 ) = 'GE'
222 nrun = 0
223 nfail = 0
224 nerrs = 0
225 DO 10 i = 1, 4
226 iseed( i ) = iseedy( i )
227 10 CONTINUE
228*
229 infot = 0
230*
231* Do for each value of M in MVAL
232*
233 DO 120 im = 1, nm
234 m = mval( im )
235 lda = max( 1, m )
236*
237 n = m
238 nimat = ntypes
239 IF( m.LE.0 .OR. n.LE.0 )
240 \$ nimat = 1
241*
242 DO 100 imat = 1, nimat
243*
244* Do the tests only if DOTYPE( IMAT ) is true.
245*
246 IF( .NOT.dotype( imat ) )
247 \$ GO TO 100
248*
249* Skip types 5, 6, or 7 if the matrix size is too small.
250*
251 zerot = imat.GE.5 .AND. imat.LE.7
252 IF( zerot .AND. n.LT.imat-4 )
253 \$ GO TO 100
254*
255* Set up parameters with ZLATB4 and generate a test matrix
256* with ZLATMS.
257*
258 CALL zlatb4( path, imat, m, n, TYPE, KL, KU, ANORM, MODE,
259 \$ CNDNUM, DIST )
260*
261 srnamt = 'ZLATMS'
262 CALL zlatms( m, n, dist, iseed, TYPE, RWORK, MODE,
263 \$ CNDNUM, ANORM, KL, KU, 'No packing', A, LDA,
264 \$ WORK, INFO )
265*
266* Check error code from ZLATMS.
267*
268 IF( info.NE.0 ) THEN
269 CALL alaerh( path, 'ZLATMS', info, 0, ' ', m, n, -1,
270 \$ -1, -1, imat, nfail, nerrs, nout )
271 GO TO 100
272 END IF
273*
274* For types 5-7, zero one or more columns of the matrix to
275* test that INFO is returned correctly.
276*
277 IF( zerot ) THEN
278 IF( imat.EQ.5 ) THEN
279 izero = 1
280 ELSE IF( imat.EQ.6 ) THEN
281 izero = min( m, n )
282 ELSE
283 izero = min( m, n ) / 2 + 1
284 END IF
285 ioff = ( izero-1 )*lda
286 IF( imat.LT.7 ) THEN
287 DO 20 i = 1, m
288 a( ioff+i ) = zero
289 20 CONTINUE
290 ELSE
291 CALL zlaset( 'Full', m, n-izero+1, dcmplx(zero),
292 \$ dcmplx(zero), a( ioff+1 ), lda )
293 END IF
294 ELSE
295 izero = 0
296 END IF
297*
298 DO 60 irhs = 1, nns
299 nrhs = nsval( irhs )
300 xtype = 'N'
301 trans = 'N'
302*
303 srnamt = 'ZLARHS'
304 CALL zlarhs( path, xtype, ' ', trans, n, n, kl,
305 \$ ku, nrhs, a, lda, x, lda, b,
306 \$ lda, iseed, info )
307*
308 srnamt = 'ZCGESV'
309*
310 kase = kase + 1
311*
312 CALL zlacpy( 'Full', m, n, a, lda, afac, lda )
313*
314 CALL zcgesv( n, nrhs, a, lda, iwork, b, lda, x, lda,
315 \$ work, swork, rwork, iter, info)
316*
317 IF (iter.LT.0) THEN
318 CALL zlacpy( 'Full', m, n, afac, lda, a, lda )
319 ENDIF
320*
321* Check error code from ZCGESV. This should be the same as
322* the one of DGETRF.
323*
324 IF( info.NE.izero ) THEN
325*
326 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
327 \$ CALL alahd( nout, path )
328 nerrs = nerrs + 1
329*
330 IF( info.NE.izero .AND. izero.NE.0 ) THEN
331 WRITE( nout, fmt = 9988 )'ZCGESV',info,
332 \$ izero,m,imat
333 ELSE
334 WRITE( nout, fmt = 9975 )'ZCGESV',info,
335 \$ m, imat
336 END IF
337 END IF
338*
339* Skip the remaining test if the matrix is singular.
340*
341 IF( info.NE.0 )
342 \$ GO TO 100
343*
344* Check the quality of the solution
345*
346 CALL zlacpy( 'Full', n, nrhs, b, lda, work, lda )
347*
348 CALL zget08( trans, n, n, nrhs, a, lda, x, lda, work,
349 \$ lda, rwork, result( 1 ) )
350*
351* Check if the test passes the tesing.
352* Print information about the tests that did not
353* pass the testing.
354*
355* If iterative refinement has been used and claimed to
356* be successful (ITER>0), we want
357* NORMI(B - A*X)/(NORMI(A)*NORMI(X)*EPS*SRQT(N)) < 1
358*
359* If double precision has been used (ITER<0), we want
360* NORMI(B - A*X)/(NORMI(A)*NORMI(X)*EPS) < THRES
361* (Cf. the linear solver testing routines)
362*
363 IF ((thresh.LE.0.0e+00)
364 \$ .OR.((iter.GE.0).AND.(n.GT.0)
365 \$ .AND.(result(1).GE.sqrt(dble(n))))
366 \$ .OR.((iter.LT.0).AND.(result(1).GE.thresh))) THEN
367*
368 IF( nfail.EQ.0 .AND. nerrs.EQ.0 ) THEN
369 WRITE( nout, fmt = 8999 )'DGE'
370 WRITE( nout, fmt = '( '' Matrix types:'' )' )
371 WRITE( nout, fmt = 8979 )
372 WRITE( nout, fmt = '( '' Test ratios:'' )' )
373 WRITE( nout, fmt = 8960 )1
374 WRITE( nout, fmt = '( '' Messages:'' )' )
375 END IF
376*
377 WRITE( nout, fmt = 9998 )trans, n, nrhs,
378 \$ imat, 1, result( 1 )
379 nfail = nfail + 1
380 END IF
381 nrun = nrun + 1
382 60 CONTINUE
383 100 CONTINUE
384 120 CONTINUE
385*
386* Print a summary of the results.
387*
388 IF( nfail.GT.0 ) THEN
389 WRITE( nout, fmt = 9996 )'ZCGESV', nfail, nrun
390 ELSE
391 WRITE( nout, fmt = 9995 )'ZCGESV', nrun
392 END IF
393 IF( nerrs.GT.0 ) THEN
394 WRITE( nout, fmt = 9994 )nerrs
395 END IF
396*
397 9998 FORMAT( ' TRANS=''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
398 \$ i2, ', test(', i2, ') =', g12.5 )
399 9996 FORMAT( 1x, a6, ': ', i6, ' out of ', i6,
400 \$ ' tests failed to pass the threshold' )
401 9995 FORMAT( /1x, 'All tests for ', a6,
402 \$ ' routines passed the threshold ( ', i6, ' tests run)' )
403 9994 FORMAT( 6x, i6, ' error messages recorded' )
404*
405* SUBNAM, INFO, INFOE, M, IMAT
406*
407 9988 FORMAT( ' *** ', a6, ' returned with INFO =', i5, ' instead of ',
408 \$ i5, / ' ==> M =', i5, ', type ',
409 \$ i2 )
410*
411* SUBNAM, INFO, M, IMAT
412*
413 9975 FORMAT( ' *** Error code from ', a6, '=', i5, ' for M=', i5,
414 \$ ', type ', i2 )
415 8999 FORMAT( / 1x, a3, ': General dense matrices' )
416 8979 FORMAT( 4x, '1. Diagonal', 24x, '7. Last n/2 columns zero', / 4x,
417 \$ '2. Upper triangular', 16x,
418 \$ '8. Random, CNDNUM = sqrt(0.1/EPS)', / 4x,
419 \$ '3. Lower triangular', 16x, '9. Random, CNDNUM = 0.1/EPS',
420 \$ / 4x, '4. Random, CNDNUM = 2', 13x,
421 \$ '10. Scaled near underflow', / 4x, '5. First column zero',
422 \$ 14x, '11. Scaled near overflow', / 4x,
423 \$ '6. Last column zero' )
424 8960 FORMAT( 3x, i2, ': norm_1( B - A * X ) / ',
425 \$ '( norm_1(A) * norm_1(X) * EPS * SQRT(N) ) > 1 if ITERREF',
426 \$ / 4x, 'or norm_1( B - A * X ) / ',
427 \$ '( norm_1(A) * norm_1(X) * EPS ) > THRES if DGETRF' )
428 RETURN
429*
430* End of ZDRVAB
431*
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine zlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
ZLARHS
Definition: zlarhs.f:208
subroutine zget08(TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
ZGET08
Definition: zget08.f:133
subroutine zlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
ZLATB4
Definition: zlatb4.f:121
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
Definition: zlatms.f:332
subroutine zcgesv(N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK, SWORK, RWORK, ITER, INFO)
ZCGESV computes the solution to system of linear equations A * X = B for GE matrices (mixed precision...
Definition: zcgesv.f:201
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
subroutine zlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: zlaset.f:106
Here is the call graph for this function:
Here is the caller graph for this function: