LAPACK  3.10.1 LAPACK: Linear Algebra PACKage

## ◆ zlavhe()

 subroutine zlavhe ( character UPLO, character TRANS, character DIAG, integer N, integer NRHS, complex*16, dimension( lda, * ) A, integer LDA, integer, dimension( * ) IPIV, complex*16, dimension( ldb, * ) B, integer LDB, integer INFO )

ZLAVHE

Purpose:
``` ZLAVHE performs one of the matrix-vector operations
x := A*x  or  x := A^H*x,
where x is an N element vector and  A is one of the factors
from the block U*D*U' or L*D*L' factorization computed by ZHETRF.

If TRANS = 'N', multiplies by U  or U * D  (or L  or L * D)
If TRANS = 'C', multiplies by U' or D * U' (or L' or D * L')```
Parameters
 [in] UPLO ``` UPLO is CHARACTER*1 Specifies whether the factor stored in A is upper or lower triangular. = 'U': Upper triangular = 'L': Lower triangular``` [in] TRANS ``` TRANS is CHARACTER*1 Specifies the operation to be performed: = 'N': x := A*x = 'C': x := A'*x``` [in] DIAG ``` DIAG is CHARACTER*1 Specifies whether or not the diagonal blocks are unit matrices. If the diagonal blocks are assumed to be unit, then A = U or A = L, otherwise A = U*D or A = L*D. = 'U': Diagonal blocks are assumed to be unit matrices. = 'N': Diagonal blocks are assumed to be non-unit matrices.``` [in] N ``` N is INTEGER The number of rows and columns of the matrix A. N >= 0.``` [in] NRHS ``` NRHS is INTEGER The number of right hand sides, i.e., the number of vectors x to be multiplied by A. NRHS >= 0.``` [in] A ``` A is COMPLEX*16 array, dimension (LDA,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZHETRF. Stored as a 2-D triangular matrix.``` [in] LDA ``` LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).``` [in] IPIV ``` IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D, as determined by ZHETRF. If UPLO = 'U': If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. (If IPIV( k ) = k, no interchange was done). If IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged, D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L': If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. (If IPIV( k ) = k, no interchange was done). If IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged, D(k:k+1,k:k+1) is a 2-by-2 diagonal block.``` [in,out] B ``` B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, B contains NRHS vectors of length N. On exit, B is overwritten with the product A * B.``` [in] LDB ``` LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).``` [out] INFO ``` INFO is INTEGER = 0: successful exit < 0: if INFO = -k, the k-th argument had an illegal value```

Definition at line 151 of file zlavhe.f.

153 *
154 * -- LAPACK test routine --
155 * -- LAPACK is a software package provided by Univ. of Tennessee, --
156 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
157 *
158 * .. Scalar Arguments ..
159  CHARACTER DIAG, TRANS, UPLO
160  INTEGER INFO, LDA, LDB, N, NRHS
161 * ..
162 * .. Array Arguments ..
163  INTEGER IPIV( * )
164  COMPLEX*16 A( LDA, * ), B( LDB, * )
165 * ..
166 *
167 * =====================================================================
168 *
169 * .. Parameters ..
170  COMPLEX*16 ONE
171  parameter( one = ( 1.0d+0, 0.0d+0 ) )
172 * ..
173 * .. Local Scalars ..
174  LOGICAL NOUNIT
175  INTEGER J, K, KP
176  COMPLEX*16 D11, D12, D21, D22, T1, T2
177 * ..
178 * .. External Functions ..
179  LOGICAL LSAME
180  EXTERNAL lsame
181 * ..
182 * .. External Subroutines ..
183  EXTERNAL xerbla, zgemv, zgeru, zlacgv, zscal, zswap
184 * ..
185 * .. Intrinsic Functions ..
186  INTRINSIC abs, dconjg, max
187 * ..
188 * .. Executable Statements ..
189 *
190 * Test the input parameters.
191 *
192  info = 0
193  IF( .NOT.lsame( uplo, 'U' ) .AND. .NOT.lsame( uplo, 'L' ) ) THEN
194  info = -1
195  ELSE IF( .NOT.lsame( trans, 'N' ) .AND. .NOT.lsame( trans, 'C' ) )
196  \$ THEN
197  info = -2
198  ELSE IF( .NOT.lsame( diag, 'U' ) .AND. .NOT.lsame( diag, 'N' ) )
199  \$ THEN
200  info = -3
201  ELSE IF( n.LT.0 ) THEN
202  info = -4
203  ELSE IF( lda.LT.max( 1, n ) ) THEN
204  info = -6
205  ELSE IF( ldb.LT.max( 1, n ) ) THEN
206  info = -9
207  END IF
208  IF( info.NE.0 ) THEN
209  CALL xerbla( 'ZLAVHE ', -info )
210  RETURN
211  END IF
212 *
213 * Quick return if possible.
214 *
215  IF( n.EQ.0 )
216  \$ RETURN
217 *
218  nounit = lsame( diag, 'N' )
219 *------------------------------------------
220 *
221 * Compute B := A * B (No transpose)
222 *
223 *------------------------------------------
224  IF( lsame( trans, 'N' ) ) THEN
225 *
226 * Compute B := U*B
227 * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
228 *
229  IF( lsame( uplo, 'U' ) ) THEN
230 *
231 * Loop forward applying the transformations.
232 *
233  k = 1
234  10 CONTINUE
235  IF( k.GT.n )
236  \$ GO TO 30
237  IF( ipiv( k ).GT.0 ) THEN
238 *
239 * 1 x 1 pivot block
240 *
241 * Multiply by the diagonal element if forming U * D.
242 *
243  IF( nounit )
244  \$ CALL zscal( nrhs, a( k, k ), b( k, 1 ), ldb )
245 *
246 * Multiply by P(K) * inv(U(K)) if K > 1.
247 *
248  IF( k.GT.1 ) THEN
249 *
250 * Apply the transformation.
251 *
252  CALL zgeru( k-1, nrhs, one, a( 1, k ), 1, b( k, 1 ),
253  \$ ldb, b( 1, 1 ), ldb )
254 *
255 * Interchange if P(K) != I.
256 *
257  kp = ipiv( k )
258  IF( kp.NE.k )
259  \$ CALL zswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
260  END IF
261  k = k + 1
262  ELSE
263 *
264 * 2 x 2 pivot block
265 *
266 * Multiply by the diagonal block if forming U * D.
267 *
268  IF( nounit ) THEN
269  d11 = a( k, k )
270  d22 = a( k+1, k+1 )
271  d12 = a( k, k+1 )
272  d21 = dconjg( d12 )
273  DO 20 j = 1, nrhs
274  t1 = b( k, j )
275  t2 = b( k+1, j )
276  b( k, j ) = d11*t1 + d12*t2
277  b( k+1, j ) = d21*t1 + d22*t2
278  20 CONTINUE
279  END IF
280 *
281 * Multiply by P(K) * inv(U(K)) if K > 1.
282 *
283  IF( k.GT.1 ) THEN
284 *
285 * Apply the transformations.
286 *
287  CALL zgeru( k-1, nrhs, one, a( 1, k ), 1, b( k, 1 ),
288  \$ ldb, b( 1, 1 ), ldb )
289  CALL zgeru( k-1, nrhs, one, a( 1, k+1 ), 1,
290  \$ b( k+1, 1 ), ldb, b( 1, 1 ), ldb )
291 *
292 * Interchange if P(K) != I.
293 *
294  kp = abs( ipiv( k ) )
295  IF( kp.NE.k )
296  \$ CALL zswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
297  END IF
298  k = k + 2
299  END IF
300  GO TO 10
301  30 CONTINUE
302 *
303 * Compute B := L*B
304 * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
305 *
306  ELSE
307 *
308 * Loop backward applying the transformations to B.
309 *
310  k = n
311  40 CONTINUE
312  IF( k.LT.1 )
313  \$ GO TO 60
314 *
315 * Test the pivot index. If greater than zero, a 1 x 1
316 * pivot was used, otherwise a 2 x 2 pivot was used.
317 *
318  IF( ipiv( k ).GT.0 ) THEN
319 *
320 * 1 x 1 pivot block:
321 *
322 * Multiply by the diagonal element if forming L * D.
323 *
324  IF( nounit )
325  \$ CALL zscal( nrhs, a( k, k ), b( k, 1 ), ldb )
326 *
327 * Multiply by P(K) * inv(L(K)) if K < N.
328 *
329  IF( k.NE.n ) THEN
330  kp = ipiv( k )
331 *
332 * Apply the transformation.
333 *
334  CALL zgeru( n-k, nrhs, one, a( k+1, k ), 1, b( k, 1 ),
335  \$ ldb, b( k+1, 1 ), ldb )
336 *
337 * Interchange if a permutation was applied at the
338 * K-th step of the factorization.
339 *
340  IF( kp.NE.k )
341  \$ CALL zswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
342  END IF
343  k = k - 1
344 *
345  ELSE
346 *
347 * 2 x 2 pivot block:
348 *
349 * Multiply by the diagonal block if forming L * D.
350 *
351  IF( nounit ) THEN
352  d11 = a( k-1, k-1 )
353  d22 = a( k, k )
354  d21 = a( k, k-1 )
355  d12 = dconjg( d21 )
356  DO 50 j = 1, nrhs
357  t1 = b( k-1, j )
358  t2 = b( k, j )
359  b( k-1, j ) = d11*t1 + d12*t2
360  b( k, j ) = d21*t1 + d22*t2
361  50 CONTINUE
362  END IF
363 *
364 * Multiply by P(K) * inv(L(K)) if K < N.
365 *
366  IF( k.NE.n ) THEN
367 *
368 * Apply the transformation.
369 *
370  CALL zgeru( n-k, nrhs, one, a( k+1, k ), 1, b( k, 1 ),
371  \$ ldb, b( k+1, 1 ), ldb )
372  CALL zgeru( n-k, nrhs, one, a( k+1, k-1 ), 1,
373  \$ b( k-1, 1 ), ldb, b( k+1, 1 ), ldb )
374 *
375 * Interchange if a permutation was applied at the
376 * K-th step of the factorization.
377 *
378  kp = abs( ipiv( k ) )
379  IF( kp.NE.k )
380  \$ CALL zswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
381  END IF
382  k = k - 2
383  END IF
384  GO TO 40
385  60 CONTINUE
386  END IF
387 *--------------------------------------------------
388 *
389 * Compute B := A^H * B (conjugate transpose)
390 *
391 *--------------------------------------------------
392  ELSE
393 *
394 * Form B := U^H*B
395 * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
396 * and U^H = inv(U^H(1))*P(1)* ... *inv(U^H(m))*P(m)
397 *
398  IF( lsame( uplo, 'U' ) ) THEN
399 *
400 * Loop backward applying the transformations.
401 *
402  k = n
403  70 CONTINUE
404  IF( k.LT.1 )
405  \$ GO TO 90
406 *
407 * 1 x 1 pivot block.
408 *
409  IF( ipiv( k ).GT.0 ) THEN
410  IF( k.GT.1 ) THEN
411 *
412 * Interchange if P(K) != I.
413 *
414  kp = ipiv( k )
415  IF( kp.NE.k )
416  \$ CALL zswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
417 *
418 * Apply the transformation
419 * y = y - B' conjg(x),
420 * where x is a column of A and y is a row of B.
421 *
422  CALL zlacgv( nrhs, b( k, 1 ), ldb )
423  CALL zgemv( 'Conjugate', k-1, nrhs, one, b, ldb,
424  \$ a( 1, k ), 1, one, b( k, 1 ), ldb )
425  CALL zlacgv( nrhs, b( k, 1 ), ldb )
426  END IF
427  IF( nounit )
428  \$ CALL zscal( nrhs, a( k, k ), b( k, 1 ), ldb )
429  k = k - 1
430 *
431 * 2 x 2 pivot block.
432 *
433  ELSE
434  IF( k.GT.2 ) THEN
435 *
436 * Interchange if P(K) != I.
437 *
438  kp = abs( ipiv( k ) )
439  IF( kp.NE.k-1 )
440  \$ CALL zswap( nrhs, b( k-1, 1 ), ldb, b( kp, 1 ),
441  \$ ldb )
442 *
443 * Apply the transformations
444 * y = y - B' conjg(x),
445 * where x is a block column of A and y is a block
446 * row of B.
447 *
448  CALL zlacgv( nrhs, b( k, 1 ), ldb )
449  CALL zgemv( 'Conjugate', k-2, nrhs, one, b, ldb,
450  \$ a( 1, k ), 1, one, b( k, 1 ), ldb )
451  CALL zlacgv( nrhs, b( k, 1 ), ldb )
452 *
453  CALL zlacgv( nrhs, b( k-1, 1 ), ldb )
454  CALL zgemv( 'Conjugate', k-2, nrhs, one, b, ldb,
455  \$ a( 1, k-1 ), 1, one, b( k-1, 1 ), ldb )
456  CALL zlacgv( nrhs, b( k-1, 1 ), ldb )
457  END IF
458 *
459 * Multiply by the diagonal block if non-unit.
460 *
461  IF( nounit ) THEN
462  d11 = a( k-1, k-1 )
463  d22 = a( k, k )
464  d12 = a( k-1, k )
465  d21 = dconjg( d12 )
466  DO 80 j = 1, nrhs
467  t1 = b( k-1, j )
468  t2 = b( k, j )
469  b( k-1, j ) = d11*t1 + d12*t2
470  b( k, j ) = d21*t1 + d22*t2
471  80 CONTINUE
472  END IF
473  k = k - 2
474  END IF
475  GO TO 70
476  90 CONTINUE
477 *
478 * Form B := L^H*B
479 * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
480 * and L^H = inv(L^H(m))*P(m)* ... *inv(L^H(1))*P(1)
481 *
482  ELSE
483 *
484 * Loop forward applying the L-transformations.
485 *
486  k = 1
487  100 CONTINUE
488  IF( k.GT.n )
489  \$ GO TO 120
490 *
491 * 1 x 1 pivot block
492 *
493  IF( ipiv( k ).GT.0 ) THEN
494  IF( k.LT.n ) THEN
495 *
496 * Interchange if P(K) != I.
497 *
498  kp = ipiv( k )
499  IF( kp.NE.k )
500  \$ CALL zswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
501 *
502 * Apply the transformation
503 *
504  CALL zlacgv( nrhs, b( k, 1 ), ldb )
505  CALL zgemv( 'Conjugate', n-k, nrhs, one, b( k+1, 1 ),
506  \$ ldb, a( k+1, k ), 1, one, b( k, 1 ), ldb )
507  CALL zlacgv( nrhs, b( k, 1 ), ldb )
508  END IF
509  IF( nounit )
510  \$ CALL zscal( nrhs, a( k, k ), b( k, 1 ), ldb )
511  k = k + 1
512 *
513 * 2 x 2 pivot block.
514 *
515  ELSE
516  IF( k.LT.n-1 ) THEN
517 *
518 * Interchange if P(K) != I.
519 *
520  kp = abs( ipiv( k ) )
521  IF( kp.NE.k+1 )
522  \$ CALL zswap( nrhs, b( k+1, 1 ), ldb, b( kp, 1 ),
523  \$ ldb )
524 *
525 * Apply the transformation
526 *
527  CALL zlacgv( nrhs, b( k+1, 1 ), ldb )
528  CALL zgemv( 'Conjugate', n-k-1, nrhs, one,
529  \$ b( k+2, 1 ), ldb, a( k+2, k+1 ), 1, one,
530  \$ b( k+1, 1 ), ldb )
531  CALL zlacgv( nrhs, b( k+1, 1 ), ldb )
532 *
533  CALL zlacgv( nrhs, b( k, 1 ), ldb )
534  CALL zgemv( 'Conjugate', n-k-1, nrhs, one,
535  \$ b( k+2, 1 ), ldb, a( k+2, k ), 1, one,
536  \$ b( k, 1 ), ldb )
537  CALL zlacgv( nrhs, b( k, 1 ), ldb )
538  END IF
539 *
540 * Multiply by the diagonal block if non-unit.
541 *
542  IF( nounit ) THEN
543  d11 = a( k, k )
544  d22 = a( k+1, k+1 )
545  d21 = a( k+1, k )
546  d12 = dconjg( d21 )
547  DO 110 j = 1, nrhs
548  t1 = b( k, j )
549  t2 = b( k+1, j )
550  b( k, j ) = d11*t1 + d12*t2
551  b( k+1, j ) = d21*t1 + d22*t2
552  110 CONTINUE
553  END IF
554  k = k + 2
555  END IF
556  GO TO 100
557  120 CONTINUE
558  END IF
559 *
560  END IF
561  RETURN
562 *
563 * End of ZLAVHE
564 *
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
subroutine zswap(N, ZX, INCX, ZY, INCY)
ZSWAP
Definition: zswap.f:81
subroutine zscal(N, ZA, ZX, INCX)
ZSCAL
Definition: zscal.f:78
subroutine zgeru(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
ZGERU
Definition: zgeru.f:130
subroutine zgemv(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
ZGEMV
Definition: zgemv.f:158
subroutine zlacgv(N, X, INCX)
ZLACGV conjugates a complex vector.
Definition: zlacgv.f:74
Here is the call graph for this function:
Here is the caller graph for this function: