LAPACK 3.11.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ zchkps()

 subroutine zchkps ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NNB, integer, dimension( * ) NBVAL, integer NRANK, integer, dimension( * ) RANKVAL, double precision THRESH, logical TSTERR, integer NMAX, complex*16, dimension( * ) A, complex*16, dimension( * ) AFAC, complex*16, dimension( * ) PERM, integer, dimension( * ) PIV, complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer NOUT )

ZCHKPS

Purpose:
` ZCHKPS tests ZPSTRF.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NNB ``` NNB is INTEGER The number of values of NB contained in the vector NBVAL.``` [in] NBVAL ``` NBVAL is INTEGER array, dimension (NNB) The values of the block size NB.``` [in] NRANK ``` NRANK is INTEGER The number of values of RANK contained in the vector RANKVAL.``` [in] RANKVAL ``` RANKVAL is INTEGER array, dimension (NBVAL) The values of the block size NB.``` [in] THRESH ``` THRESH is DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] PERM ` PERM is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] PIV ` PIV is INTEGER array, dimension (NMAX)` [out] WORK ` WORK is COMPLEX*16 array, dimension (NMAX*3)` [out] RWORK ` RWORK is DOUBLE PRECISION array, dimension (NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```

Definition at line 151 of file zchkps.f.

154*
155* -- LAPACK test routine --
156* -- LAPACK is a software package provided by Univ. of Tennessee, --
157* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
158*
159* .. Scalar Arguments ..
160 DOUBLE PRECISION THRESH
161 INTEGER NMAX, NN, NNB, NOUT, NRANK
162 LOGICAL TSTERR
163* ..
164* .. Array Arguments ..
165 COMPLEX*16 A( * ), AFAC( * ), PERM( * ), WORK( * )
166 DOUBLE PRECISION RWORK( * )
167 INTEGER NBVAL( * ), NVAL( * ), PIV( * ), RANKVAL( * )
168 LOGICAL DOTYPE( * )
169* ..
170*
171* =====================================================================
172*
173* .. Parameters ..
174 DOUBLE PRECISION ONE
175 parameter( one = 1.0e+0 )
176 INTEGER NTYPES
177 parameter( ntypes = 9 )
178* ..
179* .. Local Scalars ..
180 DOUBLE PRECISION ANORM, CNDNUM, RESULT, TOL
181 INTEGER COMPRANK, I, IMAT, IN, INB, INFO, IRANK, IUPLO,
182 \$ IZERO, KL, KU, LDA, MODE, N, NB, NERRS, NFAIL,
183 \$ NIMAT, NRUN, RANK, RANKDIFF
184 CHARACTER DIST, TYPE, UPLO
185 CHARACTER*3 PATH
186* ..
187* .. Local Arrays ..
188 INTEGER ISEED( 4 ), ISEEDY( 4 )
189 CHARACTER UPLOS( 2 )
190* ..
191* .. External Subroutines ..
192 EXTERNAL alaerh, alahd, alasum, xlaenv, zerrps, zlacpy,
194* ..
195* .. Scalars in Common ..
196 INTEGER INFOT, NUNIT
197 LOGICAL LERR, OK
198 CHARACTER*32 SRNAMT
199* ..
200* .. Common blocks ..
201 COMMON / infoc / infot, nunit, ok, lerr
202 COMMON / srnamc / srnamt
203* ..
204* .. Intrinsic Functions ..
205 INTRINSIC dble, max, ceiling
206* ..
207* .. Data statements ..
208 DATA iseedy / 1988, 1989, 1990, 1991 /
209 DATA uplos / 'U', 'L' /
210* ..
211* .. Executable Statements ..
212*
213* Initialize constants and the random number seed.
214*
215 path( 1: 1 ) = 'Zomplex Precision'
216 path( 2: 3 ) = 'PS'
217 nrun = 0
218 nfail = 0
219 nerrs = 0
220 DO 100 i = 1, 4
221 iseed( i ) = iseedy( i )
222 100 CONTINUE
223*
224* Test the error exits
225*
226 IF( tsterr )
227 \$ CALL zerrps( path, nout )
228 infot = 0
229*
230* Do for each value of N in NVAL
231*
232 DO 150 in = 1, nn
233 n = nval( in )
234 lda = max( n, 1 )
235 nimat = ntypes
236 IF( n.LE.0 )
237 \$ nimat = 1
238*
239 izero = 0
240 DO 140 imat = 1, nimat
241*
242* Do the tests only if DOTYPE( IMAT ) is true.
243*
244 IF( .NOT.dotype( imat ) )
245 \$ GO TO 140
246*
247* Do for each value of RANK in RANKVAL
248*
249 DO 130 irank = 1, nrank
250*
251* Only repeat test 3 to 5 for different ranks
252* Other tests use full rank
253*
254 IF( ( imat.LT.3 .OR. imat.GT.5 ) .AND. irank.GT.1 )
255 \$ GO TO 130
256*
257 rank = ceiling( ( n * dble( rankval( irank ) ) )
258 \$ / 100.e+0 )
259*
260*
261* Do first for UPLO = 'U', then for UPLO = 'L'
262*
263 DO 120 iuplo = 1, 2
264 uplo = uplos( iuplo )
265*
266* Set up parameters with ZLATB5 and generate a test matrix
267* with ZLATMT.
268*
269 CALL zlatb5( path, imat, n, TYPE, KL, KU, ANORM,
270 \$ MODE, CNDNUM, DIST )
271*
272 srnamt = 'ZLATMT'
273 CALL zlatmt( n, n, dist, iseed, TYPE, RWORK, MODE,
274 \$ CNDNUM, ANORM, RANK, KL, KU, UPLO, A,
275 \$ LDA, WORK, INFO )
276*
277* Check error code from ZLATMT.
278*
279 IF( info.NE.0 ) THEN
280 CALL alaerh( path, 'ZLATMT', info, 0, uplo, n,
281 \$ n, -1, -1, -1, imat, nfail, nerrs,
282 \$ nout )
283 GO TO 120
284 END IF
285*
286* Do for each value of NB in NBVAL
287*
288 DO 110 inb = 1, nnb
289 nb = nbval( inb )
290 CALL xlaenv( 1, nb )
291*
292* Compute the pivoted L*L' or U'*U factorization
293* of the matrix.
294*
295 CALL zlacpy( uplo, n, n, a, lda, afac, lda )
296 srnamt = 'ZPSTRF'
297*
298* Use default tolerance
299*
300 tol = -one
301 CALL zpstrf( uplo, n, afac, lda, piv, comprank,
302 \$ tol, rwork, info )
303*
304* Check error code from ZPSTRF.
305*
306 IF( (info.LT.izero)
307 \$ .OR.(info.NE.izero.AND.rank.EQ.n)
308 \$ .OR.(info.LE.izero.AND.rank.LT.n) ) THEN
309 CALL alaerh( path, 'ZPSTRF', info, izero,
310 \$ uplo, n, n, -1, -1, nb, imat,
311 \$ nfail, nerrs, nout )
312 GO TO 110
313 END IF
314*
315* Skip the test if INFO is not 0.
316*
317 IF( info.NE.0 )
318 \$ GO TO 110
319*
320* Reconstruct matrix from factors and compute residual.
321*
322* PERM holds permuted L*L^T or U^T*U
323*
324 CALL zpst01( uplo, n, a, lda, afac, lda, perm, lda,
325 \$ piv, rwork, result, comprank )
326*
327* Print information about the tests that did not pass
328* the threshold or where computed rank was not RANK.
329*
330 IF( n.EQ.0 )
331 \$ comprank = 0
332 rankdiff = rank - comprank
333 IF( result.GE.thresh ) THEN
334 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
335 \$ CALL alahd( nout, path )
336 WRITE( nout, fmt = 9999 )uplo, n, rank,
337 \$ rankdiff, nb, imat, result
338 nfail = nfail + 1
339 END IF
340 nrun = nrun + 1
341 110 CONTINUE
342*
343 120 CONTINUE
344 130 CONTINUE
345 140 CONTINUE
346 150 CONTINUE
347*
348* Print a summary of the results.
349*
350 CALL alasum( path, nout, nfail, nrun, nerrs )
351*
352 9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', RANK =', i3,
353 \$ ', Diff =', i5, ', NB =', i4, ', type ', i2, ', Ratio =',
354 \$ g12.5 )
355 RETURN
356*
357* End of ZCHKPS
358*
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine zpst01(UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM, PIV, RWORK, RESID, RANK)
ZPST01
Definition: zpst01.f:136
subroutine zerrps(PATH, NUNIT)
ZERRPS
Definition: zerrps.f:55
subroutine zlatb5(PATH, IMAT, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
ZLATB5
Definition: zlatb5.f:114
subroutine zlatmt(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, RANK, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMT
Definition: zlatmt.f:340
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
subroutine zpstrf(UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO)
ZPSTRF computes the Cholesky factorization with complete pivoting of a complex Hermitian positive sem...
Definition: zpstrf.f:142
Here is the call graph for this function:
Here is the caller graph for this function: