LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zget51.f
Go to the documentation of this file.
1*> \brief \b ZGET51
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE ZGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
12* RWORK, RESULT )
13*
14* .. Scalar Arguments ..
15* INTEGER ITYPE, LDA, LDB, LDU, LDV, N
16* DOUBLE PRECISION RESULT
17* ..
18* .. Array Arguments ..
19* DOUBLE PRECISION RWORK( * )
20* COMPLEX*16 A( LDA, * ), B( LDB, * ), U( LDU, * ),
21* $ V( LDV, * ), WORK( * )
22* ..
23*
24*
25*> \par Purpose:
26* =============
27*>
28*> \verbatim
29*>
30*> ZGET51 generally checks a decomposition of the form
31*>
32*> A = U B V**H
33*>
34*> where **H means conjugate transpose and U and V are unitary.
35*>
36*> Specifically, if ITYPE=1
37*>
38*> RESULT = | A - U B V**H | / ( |A| n ulp )
39*>
40*> If ITYPE=2, then:
41*>
42*> RESULT = | A - B | / ( |A| n ulp )
43*>
44*> If ITYPE=3, then:
45*>
46*> RESULT = | I - U U**H | / ( n ulp )
47*> \endverbatim
48*
49* Arguments:
50* ==========
51*
52*> \param[in] ITYPE
53*> \verbatim
54*> ITYPE is INTEGER
55*> Specifies the type of tests to be performed.
56*> =1: RESULT = | A - U B V**H | / ( |A| n ulp )
57*> =2: RESULT = | A - B | / ( |A| n ulp )
58*> =3: RESULT = | I - U U**H | / ( n ulp )
59*> \endverbatim
60*>
61*> \param[in] N
62*> \verbatim
63*> N is INTEGER
64*> The size of the matrix. If it is zero, ZGET51 does nothing.
65*> It must be at least zero.
66*> \endverbatim
67*>
68*> \param[in] A
69*> \verbatim
70*> A is COMPLEX*16 array, dimension (LDA, N)
71*> The original (unfactored) matrix.
72*> \endverbatim
73*>
74*> \param[in] LDA
75*> \verbatim
76*> LDA is INTEGER
77*> The leading dimension of A. It must be at least 1
78*> and at least N.
79*> \endverbatim
80*>
81*> \param[in] B
82*> \verbatim
83*> B is COMPLEX*16 array, dimension (LDB, N)
84*> The factored matrix.
85*> \endverbatim
86*>
87*> \param[in] LDB
88*> \verbatim
89*> LDB is INTEGER
90*> The leading dimension of B. It must be at least 1
91*> and at least N.
92*> \endverbatim
93*>
94*> \param[in] U
95*> \verbatim
96*> U is COMPLEX*16 array, dimension (LDU, N)
97*> The unitary matrix on the left-hand side in the
98*> decomposition.
99*> Not referenced if ITYPE=2
100*> \endverbatim
101*>
102*> \param[in] LDU
103*> \verbatim
104*> LDU is INTEGER
105*> The leading dimension of U. LDU must be at least N and
106*> at least 1.
107*> \endverbatim
108*>
109*> \param[in] V
110*> \verbatim
111*> V is COMPLEX*16 array, dimension (LDV, N)
112*> The unitary matrix on the left-hand side in the
113*> decomposition.
114*> Not referenced if ITYPE=2
115*> \endverbatim
116*>
117*> \param[in] LDV
118*> \verbatim
119*> LDV is INTEGER
120*> The leading dimension of V. LDV must be at least N and
121*> at least 1.
122*> \endverbatim
123*>
124*> \param[out] WORK
125*> \verbatim
126*> WORK is COMPLEX*16 array, dimension (2*N**2)
127*> \endverbatim
128*>
129*> \param[out] RWORK
130*> \verbatim
131*> RWORK is DOUBLE PRECISION array, dimension (N)
132*> \endverbatim
133*>
134*> \param[out] RESULT
135*> \verbatim
136*> RESULT is DOUBLE PRECISION
137*> The values computed by the test specified by ITYPE. The
138*> value is currently limited to 1/ulp, to avoid overflow.
139*> Errors are flagged by RESULT=10/ulp.
140*> \endverbatim
141*
142* Authors:
143* ========
144*
145*> \author Univ. of Tennessee
146*> \author Univ. of California Berkeley
147*> \author Univ. of Colorado Denver
148*> \author NAG Ltd.
149*
150*> \ingroup complex16_eig
151*
152* =====================================================================
153 SUBROUTINE zget51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
154 $ RWORK, RESULT )
155*
156* -- LAPACK test routine --
157* -- LAPACK is a software package provided by Univ. of Tennessee, --
158* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
159*
160* .. Scalar Arguments ..
161 INTEGER ITYPE, LDA, LDB, LDU, LDV, N
162 DOUBLE PRECISION RESULT
163* ..
164* .. Array Arguments ..
165 DOUBLE PRECISION RWORK( * )
166 COMPLEX*16 A( LDA, * ), B( LDB, * ), U( LDU, * ),
167 $ v( ldv, * ), work( * )
168* ..
169*
170* =====================================================================
171*
172* .. Parameters ..
173 DOUBLE PRECISION ZERO, ONE, TEN
174 parameter( zero = 0.0d+0, one = 1.0d+0, ten = 10.0d+0 )
175 COMPLEX*16 CZERO, CONE
176 parameter( czero = ( 0.0d+0, 0.0d+0 ),
177 $ cone = ( 1.0d+0, 0.0d+0 ) )
178* ..
179* .. Local Scalars ..
180 INTEGER JCOL, JDIAG, JROW
181 DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
182* ..
183* .. External Functions ..
184 DOUBLE PRECISION DLAMCH, ZLANGE
185 EXTERNAL dlamch, zlange
186* ..
187* .. External Subroutines ..
188 EXTERNAL zgemm, zlacpy
189* ..
190* .. Intrinsic Functions ..
191 INTRINSIC dble, max, min
192* ..
193* .. Executable Statements ..
194*
195 result = zero
196 IF( n.LE.0 )
197 $ RETURN
198*
199* Constants
200*
201 unfl = dlamch( 'Safe minimum' )
202 ulp = dlamch( 'Epsilon' )*dlamch( 'Base' )
203*
204* Some Error Checks
205*
206 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
207 result = ten / ulp
208 RETURN
209 END IF
210*
211 IF( itype.LE.2 ) THEN
212*
213* Tests scaled by the norm(A)
214*
215 anorm = max( zlange( '1', n, n, a, lda, rwork ), unfl )
216*
217 IF( itype.EQ.1 ) THEN
218*
219* ITYPE=1: Compute W = A - U B V**H
220*
221 CALL zlacpy( ' ', n, n, a, lda, work, n )
222 CALL zgemm( 'N', 'N', n, n, n, cone, u, ldu, b, ldb, czero,
223 $ work( n**2+1 ), n )
224*
225 CALL zgemm( 'N', 'C', n, n, n, -cone, work( n**2+1 ), n, v,
226 $ ldv, cone, work, n )
227*
228 ELSE
229*
230* ITYPE=2: Compute W = A - B
231*
232 CALL zlacpy( ' ', n, n, b, ldb, work, n )
233*
234 DO 20 jcol = 1, n
235 DO 10 jrow = 1, n
236 work( jrow+n*( jcol-1 ) ) = work( jrow+n*( jcol-1 ) )
237 $ - a( jrow, jcol )
238 10 CONTINUE
239 20 CONTINUE
240 END IF
241*
242* Compute norm(W)/ ( ulp*norm(A) )
243*
244 wnorm = zlange( '1', n, n, work, n, rwork )
245*
246 IF( anorm.GT.wnorm ) THEN
247 result = ( wnorm / anorm ) / ( n*ulp )
248 ELSE
249 IF( anorm.LT.one ) THEN
250 result = ( min( wnorm, n*anorm ) / anorm ) / ( n*ulp )
251 ELSE
252 result = min( wnorm / anorm, dble( n ) ) / ( n*ulp )
253 END IF
254 END IF
255*
256 ELSE
257*
258* Tests not scaled by norm(A)
259*
260* ITYPE=3: Compute U U**H - I
261*
262 CALL zgemm( 'N', 'C', n, n, n, cone, u, ldu, u, ldu, czero,
263 $ work, n )
264*
265 DO 30 jdiag = 1, n
266 work( ( n+1 )*( jdiag-1 )+1 ) = work( ( n+1 )*( jdiag-1 )+
267 $ 1 ) - cone
268 30 CONTINUE
269*
270 result = min( zlange( '1', n, n, work, n, rwork ),
271 $ dble( n ) ) / ( n*ulp )
272 END IF
273*
274 RETURN
275*
276* End of ZGET51
277*
278 END
subroutine zgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
ZGEMM
Definition: zgemm.f:187
subroutine zget51(ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK, RWORK, RESULT)
ZGET51
Definition: zget51.f:155
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103