LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine zptt01 | ( | integer | n, |
double precision, dimension( * ) | d, | ||
complex*16, dimension( * ) | e, | ||
double precision, dimension( * ) | df, | ||
complex*16, dimension( * ) | ef, | ||
complex*16, dimension( * ) | work, | ||
double precision | resid ) |
ZPTT01
!> !> ZPTT01 reconstructs a tridiagonal matrix A from its L*D*L' !> factorization and computes the residual !> norm(L*D*L' - A) / ( n * norm(A) * EPS ), !> where EPS is the machine epsilon. !>
[in] | N | !> N is INTEGER !> The order of the matrix A. !> |
[in] | D | !> D is DOUBLE PRECISION array, dimension (N) !> The n diagonal elements of the tridiagonal matrix A. !> |
[in] | E | !> E is COMPLEX*16 array, dimension (N-1) !> The (n-1) subdiagonal elements of the tridiagonal matrix A. !> |
[in] | DF | !> DF is DOUBLE PRECISION array, dimension (N) !> The n diagonal elements of the factor L from the L*D*L' !> factorization of A. !> |
[in] | EF | !> EF is COMPLEX*16 array, dimension (N-1) !> The (n-1) subdiagonal elements of the factor L from the !> L*D*L' factorization of A. !> |
[out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
[out] | RESID | !> RESID is DOUBLE PRECISION !> norm(L*D*L' - A) / (n * norm(A) * EPS) !> |
Definition at line 91 of file zptt01.f.