LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ztrt03()

subroutine ztrt03 ( character  uplo,
character  trans,
character  diag,
integer  n,
integer  nrhs,
complex*16, dimension( lda, * )  a,
integer  lda,
double precision  scale,
double precision, dimension( * )  cnorm,
double precision  tscal,
complex*16, dimension( ldx, * )  x,
integer  ldx,
complex*16, dimension( ldb, * )  b,
integer  ldb,
complex*16, dimension( * )  work,
double precision  resid 
)

ZTRT03

Purpose:
 ZTRT03 computes the residual for the solution to a scaled triangular
 system of equations A*x = s*b,  A**T *x = s*b,  or  A**H *x = s*b.
 Here A is a triangular matrix, A**T denotes the transpose of A, A**H
 denotes the conjugate transpose of A, s is a scalar, and x and b are
 N by NRHS matrices.  The test ratio is the maximum over the number of
 right hand sides of
    norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
 where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the matrix A is upper or lower triangular.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]TRANS
          TRANS is CHARACTER*1
          Specifies the operation applied to A.
          = 'N':  A *x = s*b     (No transpose)
          = 'T':  A**T *x = s*b  (Transpose)
          = 'C':  A**H *x = s*b  (Conjugate transpose)
[in]DIAG
          DIAG is CHARACTER*1
          Specifies whether or not the matrix A is unit triangular.
          = 'N':  Non-unit triangular
          = 'U':  Unit triangular
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices X and B.  NRHS >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The triangular matrix A.  If UPLO = 'U', the leading n by n
          upper triangular part of the array A contains the upper
          triangular matrix, and the strictly lower triangular part of
          A is not referenced.  If UPLO = 'L', the leading n by n lower
          triangular part of the array A contains the lower triangular
          matrix, and the strictly upper triangular part of A is not
          referenced.  If DIAG = 'U', the diagonal elements of A are
          also not referenced and are assumed to be 1.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]SCALE
          SCALE is DOUBLE PRECISION
          The scaling factor s used in solving the triangular system.
[in]CNORM
          CNORM is DOUBLE PRECISION array, dimension (N)
          The 1-norms of the columns of A, not counting the diagonal.
[in]TSCAL
          TSCAL is DOUBLE PRECISION
          The scaling factor used in computing the 1-norms in CNORM.
          CNORM actually contains the column norms of TSCAL*A.
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors for the system of linear
          equations.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[in]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          The right hand side vectors for the system of linear
          equations.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]WORK
          WORK is COMPLEX*16 array, dimension (N)
[out]RESID
          RESID is DOUBLE PRECISION
          The maximum over the number of right hand sides of
          norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 169 of file ztrt03.f.

171*
172* -- LAPACK test routine --
173* -- LAPACK is a software package provided by Univ. of Tennessee, --
174* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
175*
176* .. Scalar Arguments ..
177 CHARACTER DIAG, TRANS, UPLO
178 INTEGER LDA, LDB, LDX, N, NRHS
179 DOUBLE PRECISION RESID, SCALE, TSCAL
180* ..
181* .. Array Arguments ..
182 DOUBLE PRECISION CNORM( * )
183 COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ),
184 $ X( LDX, * )
185* ..
186*
187* =====================================================================
188*
189* .. Parameters ..
190 DOUBLE PRECISION ONE, ZERO
191 parameter( one = 1.0d+0, zero = 0.0d+0 )
192* ..
193* .. Local Scalars ..
194 INTEGER IX, J
195 DOUBLE PRECISION EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
196* ..
197* .. External Functions ..
198 LOGICAL LSAME
199 INTEGER IZAMAX
200 DOUBLE PRECISION DLAMCH
201 EXTERNAL lsame, izamax, dlamch
202* ..
203* .. External Subroutines ..
204 EXTERNAL zaxpy, zcopy, zdscal, ztrmv
205* ..
206* .. Intrinsic Functions ..
207 INTRINSIC abs, dble, dcmplx, max
208* ..
209* .. Executable Statements ..
210*
211* Quick exit if N = 0
212*
213 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
214 resid = zero
215 RETURN
216 END IF
217 eps = dlamch( 'Epsilon' )
218 smlnum = dlamch( 'Safe minimum' )
219*
220* Compute the norm of the triangular matrix A using the column
221* norms already computed by ZLATRS.
222*
223 tnorm = zero
224 IF( lsame( diag, 'N' ) ) THEN
225 DO 10 j = 1, n
226 tnorm = max( tnorm, tscal*abs( a( j, j ) )+cnorm( j ) )
227 10 CONTINUE
228 ELSE
229 DO 20 j = 1, n
230 tnorm = max( tnorm, tscal+cnorm( j ) )
231 20 CONTINUE
232 END IF
233*
234* Compute the maximum over the number of right hand sides of
235* norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
236*
237 resid = zero
238 DO 30 j = 1, nrhs
239 CALL zcopy( n, x( 1, j ), 1, work, 1 )
240 ix = izamax( n, work, 1 )
241 xnorm = max( one, abs( x( ix, j ) ) )
242 xscal = ( one / xnorm ) / dble( n )
243 CALL zdscal( n, xscal, work, 1 )
244 CALL ztrmv( uplo, trans, diag, n, a, lda, work, 1 )
245 CALL zaxpy( n, dcmplx( -scale*xscal ), b( 1, j ), 1, work, 1 )
246 ix = izamax( n, work, 1 )
247 err = tscal*abs( work( ix ) )
248 ix = izamax( n, x( 1, j ), 1 )
249 xnorm = abs( x( ix, j ) )
250 IF( err*smlnum.LE.xnorm ) THEN
251 IF( xnorm.GT.zero )
252 $ err = err / xnorm
253 ELSE
254 IF( err.GT.zero )
255 $ err = one / eps
256 END IF
257 IF( err*smlnum.LE.tnorm ) THEN
258 IF( tnorm.GT.zero )
259 $ err = err / tnorm
260 ELSE
261 IF( err.GT.zero )
262 $ err = one / eps
263 END IF
264 resid = max( resid, err )
265 30 CONTINUE
266*
267 RETURN
268*
269* End of ZTRT03
270*
subroutine zaxpy(n, za, zx, incx, zy, incy)
ZAXPY
Definition zaxpy.f:88
subroutine zcopy(n, zx, incx, zy, incy)
ZCOPY
Definition zcopy.f:81
integer function izamax(n, zx, incx)
IZAMAX
Definition izamax.f:71
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine zdscal(n, da, zx, incx)
ZDSCAL
Definition zdscal.f:78
subroutine ztrmv(uplo, trans, diag, n, a, lda, x, incx)
ZTRMV
Definition ztrmv.f:147
Here is the call graph for this function:
Here is the caller graph for this function: