LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zhbgv()

subroutine zhbgv ( character  jobz,
character  uplo,
integer  n,
integer  ka,
integer  kb,
complex*16, dimension( ldab, * )  ab,
integer  ldab,
complex*16, dimension( ldbb, * )  bb,
integer  ldbb,
double precision, dimension( * )  w,
complex*16, dimension( ldz, * )  z,
integer  ldz,
complex*16, dimension( * )  work,
double precision, dimension( * )  rwork,
integer  info 
)

ZHBGV

Download ZHBGV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZHBGV computes all the eigenvalues, and optionally, the eigenvectors
 of a complex generalized Hermitian-definite banded eigenproblem, of
 the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
 and banded, and B is also positive definite.
Parameters
[in]JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangles of A and B are stored;
          = 'L':  Lower triangles of A and B are stored.
[in]N
          N is INTEGER
          The order of the matrices A and B.  N >= 0.
[in]KA
          KA is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
[in]KB
          KB is INTEGER
          The number of superdiagonals of the matrix B if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
[in,out]AB
          AB is COMPLEX*16 array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first ka+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).

          On exit, the contents of AB are destroyed.
[in]LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KA+1.
[in,out]BB
          BB is COMPLEX*16 array, dimension (LDBB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix B, stored in the first kb+1 rows of the array.  The
          j-th column of B is stored in the j-th column of the array BB
          as follows:
          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).

          On exit, the factor S from the split Cholesky factorization
          B = S**H*S, as returned by ZPBSTF.
[in]LDBB
          LDBB is INTEGER
          The leading dimension of the array BB.  LDBB >= KB+1.
[out]W
          W is DOUBLE PRECISION array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
[out]Z
          Z is COMPLEX*16 array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
          eigenvectors, with the i-th column of Z holding the
          eigenvector associated with W(i). The eigenvectors are
          normalized so that Z**H*B*Z = I.
          If JOBZ = 'N', then Z is not referenced.
[in]LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= N.
[out]WORK
          WORK is COMPLEX*16 array, dimension (N)
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (3*N)
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, and i is:
             <= N:  the algorithm failed to converge:
                    i off-diagonal elements of an intermediate
                    tridiagonal form did not converge to zero;
             > N:   if INFO = N + i, for 1 <= i <= N, then ZPBSTF
                    returned INFO = i: B is not positive definite.
                    The factorization of B could not be completed and
                    no eigenvalues or eigenvectors were computed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 181 of file zhbgv.f.

183*
184* -- LAPACK driver routine --
185* -- LAPACK is a software package provided by Univ. of Tennessee, --
186* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
187*
188* .. Scalar Arguments ..
189 CHARACTER JOBZ, UPLO
190 INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, N
191* ..
192* .. Array Arguments ..
193 DOUBLE PRECISION RWORK( * ), W( * )
194 COMPLEX*16 AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
195 $ Z( LDZ, * )
196* ..
197*
198* =====================================================================
199*
200* .. Local Scalars ..
201 LOGICAL UPPER, WANTZ
202 CHARACTER VECT
203 INTEGER IINFO, INDE, INDWRK
204* ..
205* .. External Functions ..
206 LOGICAL LSAME
207 EXTERNAL lsame
208* ..
209* .. External Subroutines ..
210 EXTERNAL dsterf, xerbla, zhbgst, zhbtrd, zpbstf, zsteqr
211* ..
212* .. Executable Statements ..
213*
214* Test the input parameters.
215*
216 wantz = lsame( jobz, 'V' )
217 upper = lsame( uplo, 'U' )
218*
219 info = 0
220 IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
221 info = -1
222 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
223 info = -2
224 ELSE IF( n.LT.0 ) THEN
225 info = -3
226 ELSE IF( ka.LT.0 ) THEN
227 info = -4
228 ELSE IF( kb.LT.0 .OR. kb.GT.ka ) THEN
229 info = -5
230 ELSE IF( ldab.LT.ka+1 ) THEN
231 info = -7
232 ELSE IF( ldbb.LT.kb+1 ) THEN
233 info = -9
234 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
235 info = -12
236 END IF
237 IF( info.NE.0 ) THEN
238 CALL xerbla( 'ZHBGV', -info )
239 RETURN
240 END IF
241*
242* Quick return if possible
243*
244 IF( n.EQ.0 )
245 $ RETURN
246*
247* Form a split Cholesky factorization of B.
248*
249 CALL zpbstf( uplo, n, kb, bb, ldbb, info )
250 IF( info.NE.0 ) THEN
251 info = n + info
252 RETURN
253 END IF
254*
255* Transform problem to standard eigenvalue problem.
256*
257 inde = 1
258 indwrk = inde + n
259 CALL zhbgst( jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, z, ldz,
260 $ work, rwork( indwrk ), iinfo )
261*
262* Reduce to tridiagonal form.
263*
264 IF( wantz ) THEN
265 vect = 'U'
266 ELSE
267 vect = 'N'
268 END IF
269 CALL zhbtrd( vect, uplo, n, ka, ab, ldab, w, rwork( inde ), z,
270 $ ldz, work, iinfo )
271*
272* For eigenvalues only, call DSTERF. For eigenvectors, call ZSTEQR.
273*
274 IF( .NOT.wantz ) THEN
275 CALL dsterf( n, w, rwork( inde ), info )
276 ELSE
277 CALL zsteqr( jobz, n, w, rwork( inde ), z, ldz,
278 $ rwork( indwrk ), info )
279 END IF
280 RETURN
281*
282* End of ZHBGV
283*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zhbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, rwork, info)
ZHBGST
Definition zhbgst.f:165
subroutine zhbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
ZHBTRD
Definition zhbtrd.f:163
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine zpbstf(uplo, n, kd, ab, ldab, info)
ZPBSTF
Definition zpbstf.f:153
subroutine zsteqr(compz, n, d, e, z, ldz, work, info)
ZSTEQR
Definition zsteqr.f:132
subroutine dsterf(n, d, e, info)
DSTERF
Definition dsterf.f:86
Here is the call graph for this function:
Here is the caller graph for this function: