LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dtbtrs()

subroutine dtbtrs ( character  uplo,
character  trans,
character  diag,
integer  n,
integer  kd,
integer  nrhs,
double precision, dimension( ldab, * )  ab,
integer  ldab,
double precision, dimension( ldb, * )  b,
integer  ldb,
integer  info 
)

DTBTRS

Download DTBTRS + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DTBTRS solves a triangular system of the form

    A * X = B  or  A**T * X = B,

 where A is a triangular band matrix of order N, and B is an
 N-by NRHS matrix.  A check is made to verify that A is nonsingular.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.
[in]TRANS
          TRANS is CHARACTER*1
          Specifies the form the system of equations:
          = 'N':  A * X = B  (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
[in]DIAG
          DIAG is CHARACTER*1
          = 'N':  A is non-unit triangular;
          = 'U':  A is unit triangular.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]KD
          KD is INTEGER
          The number of superdiagonals or subdiagonals of the
          triangular band matrix A.  KD >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.
[in]AB
          AB is DOUBLE PRECISION array, dimension (LDAB,N)
          The upper or lower triangular band matrix A, stored in the
          first kd+1 rows of AB.  The j-th column of A is stored
          in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
          If DIAG = 'U', the diagonal elements of A are not referenced
          and are assumed to be 1.
[in]LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.
[in,out]B
          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B.
          On exit, if INFO = 0, the solution matrix X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the i-th diagonal element of A is zero,
                indicating that the matrix is singular and the
                solutions X have not been computed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 144 of file dtbtrs.f.

146*
147* -- LAPACK computational routine --
148* -- LAPACK is a software package provided by Univ. of Tennessee, --
149* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
150*
151* .. Scalar Arguments ..
152 CHARACTER DIAG, TRANS, UPLO
153 INTEGER INFO, KD, LDAB, LDB, N, NRHS
154* ..
155* .. Array Arguments ..
156 DOUBLE PRECISION AB( LDAB, * ), B( LDB, * )
157* ..
158*
159* =====================================================================
160*
161* .. Parameters ..
162 DOUBLE PRECISION ZERO
163 parameter( zero = 0.0d+0 )
164* ..
165* .. Local Scalars ..
166 LOGICAL NOUNIT, UPPER
167 INTEGER J
168* ..
169* .. External Functions ..
170 LOGICAL LSAME
171 EXTERNAL lsame
172* ..
173* .. External Subroutines ..
174 EXTERNAL dtbsv, xerbla
175* ..
176* .. Intrinsic Functions ..
177 INTRINSIC max
178* ..
179* .. Executable Statements ..
180*
181* Test the input parameters.
182*
183 info = 0
184 nounit = lsame( diag, 'N' )
185 upper = lsame( uplo, 'U' )
186 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
187 info = -1
188 ELSE IF( .NOT.lsame( trans, 'N' ) .AND. .NOT.
189 $ lsame( trans, 'T' ) .AND. .NOT.lsame( trans, 'C' ) ) THEN
190 info = -2
191 ELSE IF( .NOT.nounit .AND. .NOT.lsame( diag, 'U' ) ) THEN
192 info = -3
193 ELSE IF( n.LT.0 ) THEN
194 info = -4
195 ELSE IF( kd.LT.0 ) THEN
196 info = -5
197 ELSE IF( nrhs.LT.0 ) THEN
198 info = -6
199 ELSE IF( ldab.LT.kd+1 ) THEN
200 info = -8
201 ELSE IF( ldb.LT.max( 1, n ) ) THEN
202 info = -10
203 END IF
204 IF( info.NE.0 ) THEN
205 CALL xerbla( 'DTBTRS', -info )
206 RETURN
207 END IF
208*
209* Quick return if possible
210*
211 IF( n.EQ.0 )
212 $ RETURN
213*
214* Check for singularity.
215*
216 IF( nounit ) THEN
217 IF( upper ) THEN
218 DO 10 info = 1, n
219 IF( ab( kd+1, info ).EQ.zero )
220 $ RETURN
221 10 CONTINUE
222 ELSE
223 DO 20 info = 1, n
224 IF( ab( 1, info ).EQ.zero )
225 $ RETURN
226 20 CONTINUE
227 END IF
228 END IF
229 info = 0
230*
231* Solve A * X = B or A**T * X = B.
232*
233 DO 30 j = 1, nrhs
234 CALL dtbsv( uplo, trans, diag, n, kd, ab, ldab, b( 1, j ), 1 )
235 30 CONTINUE
236*
237 RETURN
238*
239* End of DTBTRS
240*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dtbsv(uplo, trans, diag, n, k, a, lda, x, incx)
DTBSV
Definition dtbsv.f:189
Here is the call graph for this function:
Here is the caller graph for this function: