LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
lapacke_zgesvj_work.c
Go to the documentation of this file.
1/*****************************************************************************
2 Copyright (c) 2014, Intel Corp.
3 All rights reserved.
4
5 Redistribution and use in source and binary forms, with or without
6 modification, are permitted provided that the following conditions are met:
7
8 * Redistributions of source code must retain the above copyright notice,
9 this list of conditions and the following disclaimer.
10 * Redistributions in binary form must reproduce the above copyright
11 notice, this list of conditions and the following disclaimer in the
12 documentation and/or other materials provided with the distribution.
13 * Neither the name of Intel Corporation nor the names of its contributors
14 may be used to endorse or promote products derived from this software
15 without specific prior written permission.
16
17 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 THE POSSIBILITY OF SUCH DAMAGE.
28*****************************************************************************
29* Contents: Native middle-level C interface to LAPACK function zgesvj
30* Author: Intel Corporation
31*****************************************************************************/
32
33#include "lapacke_utils.h"
34
35lapack_int LAPACKE_zgesvj_work( int matrix_layout, char joba, char jobu,
36 char jobv, lapack_int m, lapack_int n,
38 double* sva, lapack_int mv,
41 double* rwork, lapack_int lrwork )
42{
43 lapack_int info = 0;
44 if( matrix_layout == LAPACK_COL_MAJOR ) {
45 /* Call LAPACK function and adjust info */
46 LAPACK_zgesvj( &joba, &jobu, &jobv, &m, &n, a, &lda, sva, &mv, v, &ldv,
47 cwork, &lwork, rwork, &lrwork, &info );
48 if( info < 0 ) {
49 info = info - 1;
50 }
51 } else if( matrix_layout == LAPACK_ROW_MAJOR ) {
52 lapack_int nrows_v = LAPACKE_lsame( jobv, 'v' ) ? MAX(0,n) :
53 ( LAPACKE_lsame( jobv, 'a' ) ? MAX(0,mv) : 0);
54 lapack_int lda_t = MAX(1,m);
55 lapack_int ldv_t = MAX(1,nrows_v);
56 lapack_complex_double* a_t = NULL;
57 lapack_complex_double* v_t = NULL;
58 /* Check leading dimension(s) */
59 if( lda < n ) {
60 info = -8;
61 LAPACKE_xerbla( "LAPACKE_zgesvj_work", info );
62 return info;
63 }
64 if( ldv < n ) {
65 info = -12;
66 LAPACKE_xerbla( "LAPACKE_zgesvj_work", info );
67 return info;
68 }
69 /* Allocate memory for temporary array(s) */
71 LAPACKE_malloc( sizeof(lapack_complex_double) * lda_t * MAX(1,n) );
72 if( a_t == NULL ) {
74 goto exit_level_0;
75 }
76 if( LAPACKE_lsame( jobv, 'a' ) || LAPACKE_lsame( jobv, 'v' ) ) {
78 LAPACKE_malloc( sizeof(lapack_complex_double) * ldv_t * MAX(1,n) );
79 if( v_t == NULL ) {
81 goto exit_level_1;
82 }
83 }
84 /* Transpose input matrices */
85 LAPACKE_zge_trans( matrix_layout, m, n, a, lda, a_t, lda_t );
86 if( LAPACKE_lsame( jobv, 'a' ) ) {
87 LAPACKE_zge_trans( matrix_layout, nrows_v, n, v, ldv, v_t, ldv_t );
88 }
89 /* Call LAPACK function and adjust info */
90 LAPACK_zgesvj( &joba, &jobu, &jobv, &m, &n, a_t, &lda_t, sva, &mv, v_t,
91 &ldv_t, cwork, &lwork, rwork, &lrwork, &info );
92 if( info < 0 ) {
93 info = info - 1;
94 }
95 /* Transpose output matrices */
96 LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, a_t, lda_t, a, lda );
97 if( LAPACKE_lsame( jobv, 'a' ) || LAPACKE_lsame( jobv, 'v' ) ) {
98 LAPACKE_zge_trans( LAPACK_COL_MAJOR, nrows_v, n, v_t, ldv_t, v,
99 ldv );
100 }
101 /* Release memory and exit */
102 if( LAPACKE_lsame( jobv, 'a' ) || LAPACKE_lsame( jobv, 'v' ) ) {
103 LAPACKE_free( v_t );
104 }
105exit_level_1:
106 LAPACKE_free( a_t );
107exit_level_0:
108 if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
109 LAPACKE_xerbla( "LAPACKE_zgesvj_work", info );
110 }
111 } else {
112 info = -1;
113 LAPACKE_xerbla( "LAPACKE_zgesvj_work", info );
114 }
115 return info;
116}
#define lapack_int
Definition: lapack.h:87
#define LAPACK_zgesvj(...)
Definition: lapack.h:3709
#define lapack_complex_double
Definition: lapack.h:64
#define LAPACK_COL_MAJOR
Definition: lapacke.h:53
#define LAPACKE_free(p)
Definition: lapacke.h:46
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:52
#define LAPACKE_malloc(size)
Definition: lapacke.h:43
#define LAPACK_TRANSPOSE_MEMORY_ERROR
Definition: lapacke.h:56
lapack_logical LAPACKE_lsame(char ca, char cb)
Definition: lapacke_lsame.c:35
void LAPACKE_xerbla(const char *name, lapack_int info)
void LAPACKE_zge_trans(int matrix_layout, lapack_int m, lapack_int n, const lapack_complex_double *in, lapack_int ldin, lapack_complex_double *out, lapack_int ldout)
#define MAX(x, y)
Definition: lapacke_utils.h:46
lapack_int LAPACKE_zgesvj_work(int matrix_layout, char joba, char jobu, char jobv, lapack_int m, lapack_int n, lapack_complex_double *a, lapack_int lda, double *sva, lapack_int mv, lapack_complex_double *v, lapack_int ldv, lapack_complex_double *cwork, lapack_int lwork, double *rwork, lapack_int lrwork)