LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zgesv()

subroutine zgesv ( integer n,
integer nrhs,
complex*16, dimension( lda, * ) a,
integer lda,
integer, dimension( * ) ipiv,
complex*16, dimension( ldb, * ) b,
integer ldb,
integer info )

Download ZGESV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZGESV computes the solution to a complex system of linear equations
!>    A * X = B,
!> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
!>
!> The LU decomposition with partial pivoting and row interchanges is
!> used to factor A as
!>    A = P * L * U,
!> where P is a permutation matrix, L is unit lower triangular, and U is
!> upper triangular.  The factored form of A is then used to solve the
!> system of equations A * X = B.
!> 
Parameters
[in]N
!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in,out]A
!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          On entry, the N-by-N coefficient matrix A.
!>          On exit, the factors L and U from the factorization
!>          A = P*L*U; the unit diagonal elements of L are not stored.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          The pivot indices that define the permutation matrix P;
!>          row i of the matrix was interchanged with row IPIV(i).
!> 
[in,out]B
!>          B is COMPLEX*16 array, dimension (LDB,NRHS)
!>          On entry, the N-by-NRHS matrix of right hand side matrix B.
!>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization
!>                has been completed, but the factor U is exactly
!>                singular, so the solution could not be computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 121 of file zgesv.f.

122*
123* -- LAPACK driver routine --
124* -- LAPACK is a software package provided by Univ. of Tennessee, --
125* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
126*
127* .. Scalar Arguments ..
128 INTEGER INFO, LDA, LDB, N, NRHS
129* ..
130* .. Array Arguments ..
131 INTEGER IPIV( * )
132 COMPLEX*16 A( LDA, * ), B( LDB, * )
133* ..
134*
135* =====================================================================
136*
137* .. External Subroutines ..
138 EXTERNAL xerbla, zgetrf, zgetrs
139* ..
140* .. Intrinsic Functions ..
141 INTRINSIC max
142* ..
143* .. Executable Statements ..
144*
145* Test the input parameters.
146*
147 info = 0
148 IF( n.LT.0 ) THEN
149 info = -1
150 ELSE IF( nrhs.LT.0 ) THEN
151 info = -2
152 ELSE IF( lda.LT.max( 1, n ) ) THEN
153 info = -4
154 ELSE IF( ldb.LT.max( 1, n ) ) THEN
155 info = -7
156 END IF
157 IF( info.NE.0 ) THEN
158 CALL xerbla( 'ZGESV ', -info )
159 RETURN
160 END IF
161*
162* Compute the LU factorization of A.
163*
164 CALL zgetrf( n, n, a, lda, ipiv, info )
165 IF( info.EQ.0 ) THEN
166*
167* Solve the system A*X = B, overwriting B with X.
168*
169 CALL zgetrs( 'No transpose', n, nrhs, a, lda, ipiv, b, ldb,
170 $ info )
171 END IF
172 RETURN
173*
174* End of ZGESV
175*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zgetrf(m, n, a, lda, ipiv, info)
ZGETRF
Definition zgetrf.f:106
subroutine zgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)
ZGETRS
Definition zgetrs.f:119
Here is the call graph for this function:
Here is the caller graph for this function: