LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ LAPACKE_ztp_nancheck()

lapack_logical LAPACKE_ztp_nancheck ( int  matrix_layout,
char  uplo,
char  diag,
lapack_int  n,
const lapack_complex_double ap 
)

Definition at line 39 of file lapacke_ztp_nancheck.c.

42{
43 lapack_int i, len;
44 lapack_logical colmaj, upper, unit;
45
46 if( ap == NULL ) return (lapack_logical) 0;
47
48 colmaj = ( matrix_layout == LAPACK_COL_MAJOR );
49 upper = LAPACKE_lsame( uplo, 'u' );
50 unit = LAPACKE_lsame( diag, 'u' );
51
52 if( ( !colmaj && ( matrix_layout != LAPACK_ROW_MAJOR ) ) ||
53 ( !upper && !LAPACKE_lsame( uplo, 'l' ) ) ||
54 ( !unit && !LAPACKE_lsame( diag, 'n' ) ) ) {
55 /* Just exit if any of input parameters are wrong */
56 return (lapack_logical) 0;
57 }
58
59 if( unit ) {
60 /* Unit case, diagonal should be excluded from the check for NaN. */
61
62 /* Since col_major upper and row_major lower are equal,
63 * and col_major lower and row_major upper are equals too -
64 * using one code for equal cases. XOR( colmaj, upper )
65 */
66 if( ( colmaj || upper ) && !( colmaj && upper ) ) {
67 for( i = 1; i < n; i++ )
68 if( LAPACKE_z_nancheck( i, &ap[ ((size_t)i+1)*i/2 ], 1 ) )
69 return (lapack_logical) 1;
70 } else {
71 for( i = 0; i < n-1; i++ )
72 if( LAPACKE_z_nancheck( n-i-1,
73 &ap[ (size_t)i+1 + i*((size_t)2*n-i+1)/2 ], 1 ) )
74 return (lapack_logical) 1;
75 }
76 return (lapack_logical) 0;
77 } else {
78 /* Non-unit case - just check whole array for NaNs. */
79 len = n*(n+1)/2;
80 return LAPACKE_z_nancheck( len, ap, 1 );
81 }
82}
#define lapack_int
Definition: lapack.h:87
#define lapack_logical
Definition: lapack.h:103
#define LAPACK_COL_MAJOR
Definition: lapacke.h:53
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:52
lapack_logical LAPACKE_lsame(char ca, char cb)
Definition: lapacke_lsame.c:35
lapack_logical LAPACKE_z_nancheck(lapack_int n, const lapack_complex_double *x, lapack_int incx)
Here is the call graph for this function:
Here is the caller graph for this function: