LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dgtt05()

subroutine dgtt05 ( character trans,
integer n,
integer nrhs,
double precision, dimension( * ) dl,
double precision, dimension( * ) d,
double precision, dimension( * ) du,
double precision, dimension( ldb, * ) b,
integer ldb,
double precision, dimension( ldx, * ) x,
integer ldx,
double precision, dimension( ldxact, * ) xact,
integer ldxact,
double precision, dimension( * ) ferr,
double precision, dimension( * ) berr,
double precision, dimension( * ) reslts )

DGTT05

Purpose:
!>
!> DGTT05 tests the error bounds from iterative refinement for the
!> computed solution to a system of equations A*X = B, where A is a
!> general tridiagonal matrix of order n and op(A) = A or A**T,
!> depending on TRANS.
!>
!> RESLTS(1) = test of the error bound
!>           = norm(X - XACT) / ( norm(X) * FERR )
!>
!> A large value is returned if this ratio is not less than one.
!>
!> RESLTS(2) = residual from the iterative refinement routine
!>           = the maximum of BERR / ( NZ*EPS + (*) ), where
!>             (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
!>             and NZ = max. number of nonzeros in any row of A, plus 1
!> 
Parameters
[in]TRANS
!>          TRANS is CHARACTER*1
!>          Specifies the form of the system of equations.
!>          = 'N':  A * X = B     (No transpose)
!>          = 'T':  A**T * X = B  (Transpose)
!>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
!> 
[in]N
!>          N is INTEGER
!>          The number of rows of the matrices X and XACT.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of columns of the matrices X and XACT.  NRHS >= 0.
!> 
[in]DL
!>          DL is DOUBLE PRECISION array, dimension (N-1)
!>          The (n-1) sub-diagonal elements of A.
!> 
[in]D
!>          D is DOUBLE PRECISION array, dimension (N)
!>          The diagonal elements of A.
!> 
[in]DU
!>          DU is DOUBLE PRECISION array, dimension (N-1)
!>          The (n-1) super-diagonal elements of A.
!> 
[in]B
!>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
!>          The right hand side vectors for the system of linear
!>          equations.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[in]X
!>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
!>          The computed solution vectors.  Each vector is stored as a
!>          column of the matrix X.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[in]XACT
!>          XACT is DOUBLE PRECISION array, dimension (LDX,NRHS)
!>          The exact solution vectors.  Each vector is stored as a
!>          column of the matrix XACT.
!> 
[in]LDXACT
!>          LDXACT is INTEGER
!>          The leading dimension of the array XACT.  LDXACT >= max(1,N).
!> 
[in]FERR
!>          FERR is DOUBLE PRECISION array, dimension (NRHS)
!>          The estimated forward error bounds for each solution vector
!>          X.  If XTRUE is the true solution, FERR bounds the magnitude
!>          of the largest entry in (X - XTRUE) divided by the magnitude
!>          of the largest entry in X.
!> 
[in]BERR
!>          BERR is DOUBLE PRECISION array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector (i.e., the smallest relative change in any entry of A
!>          or B that makes X an exact solution).
!> 
[out]RESLTS
!>          RESLTS is DOUBLE PRECISION array, dimension (2)
!>          The maximum over the NRHS solution vectors of the ratios:
!>          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
!>          RESLTS(2) = BERR / ( NZ*EPS + (*) )
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 163 of file dgtt05.f.

165*
166* -- LAPACK test routine --
167* -- LAPACK is a software package provided by Univ. of Tennessee, --
168* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
169*
170* .. Scalar Arguments ..
171 CHARACTER TRANS
172 INTEGER LDB, LDX, LDXACT, N, NRHS
173* ..
174* .. Array Arguments ..
175 DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DL( * ),
176 $ DU( * ), FERR( * ), RESLTS( * ), X( LDX, * ),
177 $ XACT( LDXACT, * )
178* ..
179*
180* =====================================================================
181*
182* .. Parameters ..
183 DOUBLE PRECISION ZERO, ONE
184 parameter( zero = 0.0d+0, one = 1.0d+0 )
185* ..
186* .. Local Scalars ..
187 LOGICAL NOTRAN
188 INTEGER I, IMAX, J, K, NZ
189 DOUBLE PRECISION AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
190* ..
191* .. External Functions ..
192 LOGICAL LSAME
193 INTEGER IDAMAX
194 DOUBLE PRECISION DLAMCH
195 EXTERNAL lsame, idamax, dlamch
196* ..
197* .. Intrinsic Functions ..
198 INTRINSIC abs, max, min
199* ..
200* .. Executable Statements ..
201*
202* Quick exit if N = 0 or NRHS = 0.
203*
204 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
205 reslts( 1 ) = zero
206 reslts( 2 ) = zero
207 RETURN
208 END IF
209*
210 eps = dlamch( 'Epsilon' )
211 unfl = dlamch( 'Safe minimum' )
212 ovfl = one / unfl
213 notran = lsame( trans, 'N' )
214 nz = 4
215*
216* Test 1: Compute the maximum of
217* norm(X - XACT) / ( norm(X) * FERR )
218* over all the vectors X and XACT using the infinity-norm.
219*
220 errbnd = zero
221 DO 30 j = 1, nrhs
222 imax = idamax( n, x( 1, j ), 1 )
223 xnorm = max( abs( x( imax, j ) ), unfl )
224 diff = zero
225 DO 10 i = 1, n
226 diff = max( diff, abs( x( i, j )-xact( i, j ) ) )
227 10 CONTINUE
228*
229 IF( xnorm.GT.one ) THEN
230 GO TO 20
231 ELSE IF( diff.LE.ovfl*xnorm ) THEN
232 GO TO 20
233 ELSE
234 errbnd = one / eps
235 GO TO 30
236 END IF
237*
238 20 CONTINUE
239 IF( diff / xnorm.LE.ferr( j ) ) THEN
240 errbnd = max( errbnd, ( diff / xnorm ) / ferr( j ) )
241 ELSE
242 errbnd = one / eps
243 END IF
244 30 CONTINUE
245 reslts( 1 ) = errbnd
246*
247* Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where
248* (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
249*
250 DO 60 k = 1, nrhs
251 IF( notran ) THEN
252 IF( n.EQ.1 ) THEN
253 axbi = abs( b( 1, k ) ) + abs( d( 1 )*x( 1, k ) )
254 ELSE
255 axbi = abs( b( 1, k ) ) + abs( d( 1 )*x( 1, k ) ) +
256 $ abs( du( 1 )*x( 2, k ) )
257 DO 40 i = 2, n - 1
258 tmp = abs( b( i, k ) ) + abs( dl( i-1 )*x( i-1, k ) )
259 $ + abs( d( i )*x( i, k ) ) +
260 $ abs( du( i )*x( i+1, k ) )
261 axbi = min( axbi, tmp )
262 40 CONTINUE
263 tmp = abs( b( n, k ) ) + abs( dl( n-1 )*x( n-1, k ) ) +
264 $ abs( d( n )*x( n, k ) )
265 axbi = min( axbi, tmp )
266 END IF
267 ELSE
268 IF( n.EQ.1 ) THEN
269 axbi = abs( b( 1, k ) ) + abs( d( 1 )*x( 1, k ) )
270 ELSE
271 axbi = abs( b( 1, k ) ) + abs( d( 1 )*x( 1, k ) ) +
272 $ abs( dl( 1 )*x( 2, k ) )
273 DO 50 i = 2, n - 1
274 tmp = abs( b( i, k ) ) + abs( du( i-1 )*x( i-1, k ) )
275 $ + abs( d( i )*x( i, k ) ) +
276 $ abs( dl( i )*x( i+1, k ) )
277 axbi = min( axbi, tmp )
278 50 CONTINUE
279 tmp = abs( b( n, k ) ) + abs( du( n-1 )*x( n-1, k ) ) +
280 $ abs( d( n )*x( n, k ) )
281 axbi = min( axbi, tmp )
282 END IF
283 END IF
284 tmp = berr( k ) / ( nz*eps+nz*unfl / max( axbi, nz*unfl ) )
285 IF( k.EQ.1 ) THEN
286 reslts( 2 ) = tmp
287 ELSE
288 reslts( 2 ) = max( reslts( 2 ), tmp )
289 END IF
290 60 CONTINUE
291*
292 RETURN
293*
294* End of DGTT05
295*
integer function idamax(n, dx, incx)
IDAMAX
Definition idamax.f:71
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the caller graph for this function: