LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ clatsp()

subroutine clatsp ( character  uplo,
integer  n,
complex, dimension( * )  x,
integer, dimension( * )  iseed 
)

CLATSP

Purpose:
 CLATSP generates a special test matrix for the complex symmetric
 (indefinite) factorization for packed matrices.  The pivot blocks of
 the generated matrix will be in the following order:
    2x2 pivot block, non diagonalizable
    1x1 pivot block
    2x2 pivot block, diagonalizable
    (cycle repeats)
 A row interchange is required for each non-diagonalizable 2x2 block.
Parameters
[in]UPLO
          UPLO is CHARACTER
          Specifies whether the generated matrix is to be upper or
          lower triangular.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The dimension of the matrix to be generated.
[out]X
          X is COMPLEX array, dimension (N*(N+1)/2)
          The generated matrix in packed storage format.  The matrix
          consists of 3x3 and 2x2 diagonal blocks which result in the
          pivot sequence given above.  The matrix outside these
          diagonal blocks is zero.
[in,out]ISEED
          ISEED is INTEGER array, dimension (4)
          On entry, the seed for the random number generator.  The last
          of the four integers must be odd.  (modified on exit)
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 83 of file clatsp.f.

84*
85* -- LAPACK test routine --
86* -- LAPACK is a software package provided by Univ. of Tennessee, --
87* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
88*
89* .. Scalar Arguments ..
90 CHARACTER UPLO
91 INTEGER N
92* ..
93* .. Array Arguments ..
94 INTEGER ISEED( * )
95 COMPLEX X( * )
96* ..
97*
98* =====================================================================
99*
100* .. Parameters ..
101 COMPLEX EYE
102 parameter( eye = ( 0.0, 1.0 ) )
103* ..
104* .. Local Scalars ..
105 INTEGER J, JJ, N5
106 REAL ALPHA, ALPHA3, BETA
107 COMPLEX A, B, C, R
108* ..
109* .. External Functions ..
110 COMPLEX CLARND
111 EXTERNAL clarnd
112* ..
113* .. Intrinsic Functions ..
114 INTRINSIC abs, sqrt
115* ..
116* .. Executable Statements ..
117*
118* Initialize constants
119*
120 alpha = ( 1.+sqrt( 17. ) ) / 8.
121 beta = alpha - 1. / 1000.
122 alpha3 = alpha*alpha*alpha
123*
124* Fill the matrix with zeros.
125*
126 DO 10 j = 1, n*( n+1 ) / 2
127 x( j ) = 0.0
128 10 CONTINUE
129*
130* UPLO = 'U': Upper triangular storage
131*
132 IF( uplo.EQ.'U' ) THEN
133 n5 = n / 5
134 n5 = n - 5*n5 + 1
135*
136 jj = n*( n+1 ) / 2
137 DO 20 j = n, n5, -5
138 a = alpha3*clarnd( 5, iseed )
139 b = clarnd( 5, iseed ) / alpha
140 c = a - 2.*b*eye
141 r = c / beta
142 x( jj ) = a
143 x( jj-2 ) = b
144 jj = jj - j
145 x( jj ) = clarnd( 2, iseed )
146 x( jj-1 ) = r
147 jj = jj - ( j-1 )
148 x( jj ) = c
149 jj = jj - ( j-2 )
150 x( jj ) = clarnd( 2, iseed )
151 jj = jj - ( j-3 )
152 x( jj ) = clarnd( 2, iseed )
153 IF( abs( x( jj+( j-3 ) ) ).GT.abs( x( jj ) ) ) THEN
154 x( jj+( j-4 ) ) = 2.0*x( jj+( j-3 ) )
155 ELSE
156 x( jj+( j-4 ) ) = 2.0*x( jj )
157 END IF
158 jj = jj - ( j-4 )
159 20 CONTINUE
160*
161* Clean-up for N not a multiple of 5.
162*
163 j = n5 - 1
164 IF( j.GT.2 ) THEN
165 a = alpha3*clarnd( 5, iseed )
166 b = clarnd( 5, iseed ) / alpha
167 c = a - 2.*b*eye
168 r = c / beta
169 x( jj ) = a
170 x( jj-2 ) = b
171 jj = jj - j
172 x( jj ) = clarnd( 2, iseed )
173 x( jj-1 ) = r
174 jj = jj - ( j-1 )
175 x( jj ) = c
176 jj = jj - ( j-2 )
177 j = j - 3
178 END IF
179 IF( j.GT.1 ) THEN
180 x( jj ) = clarnd( 2, iseed )
181 x( jj-j ) = clarnd( 2, iseed )
182 IF( abs( x( jj ) ).GT.abs( x( jj-j ) ) ) THEN
183 x( jj-1 ) = 2.0*x( jj )
184 ELSE
185 x( jj-1 ) = 2.0*x( jj-j )
186 END IF
187 jj = jj - j - ( j-1 )
188 j = j - 2
189 ELSE IF( j.EQ.1 ) THEN
190 x( jj ) = clarnd( 2, iseed )
191 j = j - 1
192 END IF
193*
194* UPLO = 'L': Lower triangular storage
195*
196 ELSE
197 n5 = n / 5
198 n5 = n5*5
199*
200 jj = 1
201 DO 30 j = 1, n5, 5
202 a = alpha3*clarnd( 5, iseed )
203 b = clarnd( 5, iseed ) / alpha
204 c = a - 2.*b*eye
205 r = c / beta
206 x( jj ) = a
207 x( jj+2 ) = b
208 jj = jj + ( n-j+1 )
209 x( jj ) = clarnd( 2, iseed )
210 x( jj+1 ) = r
211 jj = jj + ( n-j )
212 x( jj ) = c
213 jj = jj + ( n-j-1 )
214 x( jj ) = clarnd( 2, iseed )
215 jj = jj + ( n-j-2 )
216 x( jj ) = clarnd( 2, iseed )
217 IF( abs( x( jj-( n-j-2 ) ) ).GT.abs( x( jj ) ) ) THEN
218 x( jj-( n-j-2 )+1 ) = 2.0*x( jj-( n-j-2 ) )
219 ELSE
220 x( jj-( n-j-2 )+1 ) = 2.0*x( jj )
221 END IF
222 jj = jj + ( n-j-3 )
223 30 CONTINUE
224*
225* Clean-up for N not a multiple of 5.
226*
227 j = n5 + 1
228 IF( j.LT.n-1 ) THEN
229 a = alpha3*clarnd( 5, iseed )
230 b = clarnd( 5, iseed ) / alpha
231 c = a - 2.*b*eye
232 r = c / beta
233 x( jj ) = a
234 x( jj+2 ) = b
235 jj = jj + ( n-j+1 )
236 x( jj ) = clarnd( 2, iseed )
237 x( jj+1 ) = r
238 jj = jj + ( n-j )
239 x( jj ) = c
240 jj = jj + ( n-j-1 )
241 j = j + 3
242 END IF
243 IF( j.LT.n ) THEN
244 x( jj ) = clarnd( 2, iseed )
245 x( jj+( n-j+1 ) ) = clarnd( 2, iseed )
246 IF( abs( x( jj ) ).GT.abs( x( jj+( n-j+1 ) ) ) ) THEN
247 x( jj+1 ) = 2.0*x( jj )
248 ELSE
249 x( jj+1 ) = 2.0*x( jj+( n-j+1 ) )
250 END IF
251 jj = jj + ( n-j+1 ) + ( n-j )
252 j = j + 2
253 ELSE IF( j.EQ.n ) THEN
254 x( jj ) = clarnd( 2, iseed )
255 jj = jj + ( n-j+1 )
256 j = j + 1
257 END IF
258 END IF
259*
260 RETURN
261*
262* End of CLATSP
263*
complex function clarnd(idist, iseed)
CLARND
Definition clarnd.f:75
Here is the caller graph for this function: