LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dsyev()

subroutine dsyev ( character  jobz,
character  uplo,
integer  n,
double precision, dimension( lda, * )  a,
integer  lda,
double precision, dimension( * )  w,
double precision, dimension( * )  work,
integer  lwork,
integer  info 
)

DSYEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices

Download DSYEV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DSYEV computes all eigenvalues and, optionally, eigenvectors of a
 real symmetric matrix A.
Parameters
[in]JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in,out]A
          A is DOUBLE PRECISION array, dimension (LDA, N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the
          leading N-by-N upper triangular part of A contains the
          upper triangular part of the matrix A.  If UPLO = 'L',
          the leading N-by-N lower triangular part of A contains
          the lower triangular part of the matrix A.
          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
          orthonormal eigenvectors of the matrix A.
          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
          or the upper triangle (if UPLO='U') of A, including the
          diagonal, is destroyed.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[out]W
          W is DOUBLE PRECISION array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The length of the array WORK.  LWORK >= max(1,3*N-1).
          For optimal efficiency, LWORK >= (NB+2)*N,
          where NB is the blocksize for DSYTRD returned by ILAENV.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 131 of file dsyev.f.

132*
133* -- LAPACK driver routine --
134* -- LAPACK is a software package provided by Univ. of Tennessee, --
135* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
136*
137* .. Scalar Arguments ..
138 CHARACTER JOBZ, UPLO
139 INTEGER INFO, LDA, LWORK, N
140* ..
141* .. Array Arguments ..
142 DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * )
143* ..
144*
145* =====================================================================
146*
147* .. Parameters ..
148 DOUBLE PRECISION ZERO, ONE
149 parameter( zero = 0.0d0, one = 1.0d0 )
150* ..
151* .. Local Scalars ..
152 LOGICAL LOWER, LQUERY, WANTZ
153 INTEGER IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE,
154 $ LLWORK, LWKOPT, NB
155 DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
156 $ SMLNUM
157* ..
158* .. External Functions ..
159 LOGICAL LSAME
160 INTEGER ILAENV
161 DOUBLE PRECISION DLAMCH, DLANSY
162 EXTERNAL lsame, ilaenv, dlamch, dlansy
163* ..
164* .. External Subroutines ..
165 EXTERNAL dlascl, dorgtr, dscal, dsteqr, dsterf, dsytrd,
166 $ xerbla
167* ..
168* .. Intrinsic Functions ..
169 INTRINSIC max, sqrt
170* ..
171* .. Executable Statements ..
172*
173* Test the input parameters.
174*
175 wantz = lsame( jobz, 'V' )
176 lower = lsame( uplo, 'L' )
177 lquery = ( lwork.EQ.-1 )
178*
179 info = 0
180 IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
181 info = -1
182 ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
183 info = -2
184 ELSE IF( n.LT.0 ) THEN
185 info = -3
186 ELSE IF( lda.LT.max( 1, n ) ) THEN
187 info = -5
188 END IF
189*
190 IF( info.EQ.0 ) THEN
191 nb = ilaenv( 1, 'DSYTRD', uplo, n, -1, -1, -1 )
192 lwkopt = max( 1, ( nb+2 )*n )
193 work( 1 ) = lwkopt
194*
195 IF( lwork.LT.max( 1, 3*n-1 ) .AND. .NOT.lquery )
196 $ info = -8
197 END IF
198*
199 IF( info.NE.0 ) THEN
200 CALL xerbla( 'DSYEV ', -info )
201 RETURN
202 ELSE IF( lquery ) THEN
203 RETURN
204 END IF
205*
206* Quick return if possible
207*
208 IF( n.EQ.0 ) THEN
209 RETURN
210 END IF
211*
212 IF( n.EQ.1 ) THEN
213 w( 1 ) = a( 1, 1 )
214 work( 1 ) = 2
215 IF( wantz )
216 $ a( 1, 1 ) = one
217 RETURN
218 END IF
219*
220* Get machine constants.
221*
222 safmin = dlamch( 'Safe minimum' )
223 eps = dlamch( 'Precision' )
224 smlnum = safmin / eps
225 bignum = one / smlnum
226 rmin = sqrt( smlnum )
227 rmax = sqrt( bignum )
228*
229* Scale matrix to allowable range, if necessary.
230*
231 anrm = dlansy( 'M', uplo, n, a, lda, work )
232 iscale = 0
233 IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
234 iscale = 1
235 sigma = rmin / anrm
236 ELSE IF( anrm.GT.rmax ) THEN
237 iscale = 1
238 sigma = rmax / anrm
239 END IF
240 IF( iscale.EQ.1 )
241 $ CALL dlascl( uplo, 0, 0, one, sigma, n, n, a, lda, info )
242*
243* Call DSYTRD to reduce symmetric matrix to tridiagonal form.
244*
245 inde = 1
246 indtau = inde + n
247 indwrk = indtau + n
248 llwork = lwork - indwrk + 1
249 CALL dsytrd( uplo, n, a, lda, w, work( inde ), work( indtau ),
250 $ work( indwrk ), llwork, iinfo )
251*
252* For eigenvalues only, call DSTERF. For eigenvectors, first call
253* DORGTR to generate the orthogonal matrix, then call DSTEQR.
254*
255 IF( .NOT.wantz ) THEN
256 CALL dsterf( n, w, work( inde ), info )
257 ELSE
258 CALL dorgtr( uplo, n, a, lda, work( indtau ), work( indwrk ),
259 $ llwork, iinfo )
260 CALL dsteqr( jobz, n, w, work( inde ), a, lda, work( indtau ),
261 $ info )
262 END IF
263*
264* If matrix was scaled, then rescale eigenvalues appropriately.
265*
266 IF( iscale.EQ.1 ) THEN
267 IF( info.EQ.0 ) THEN
268 imax = n
269 ELSE
270 imax = info - 1
271 END IF
272 CALL dscal( imax, one / sigma, w, 1 )
273 END IF
274*
275* Set WORK(1) to optimal workspace size.
276*
277 work( 1 ) = lwkopt
278*
279 RETURN
280*
281* End of DSYEV
282*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dsytrd(uplo, n, a, lda, d, e, tau, work, lwork, info)
DSYTRD
Definition dsytrd.f:192
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function dlansy(norm, uplo, n, a, lda, work)
DLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition dlansy.f:122
subroutine dlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition dlascl.f:143
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
subroutine dsteqr(compz, n, d, e, z, ldz, work, info)
DSTEQR
Definition dsteqr.f:131
subroutine dsterf(n, d, e, info)
DSTERF
Definition dsterf.f:86
subroutine dorgtr(uplo, n, a, lda, tau, work, lwork, info)
DORGTR
Definition dorgtr.f:123
Here is the call graph for this function:
Here is the caller graph for this function: