LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ztbt03()

subroutine ztbt03 ( character  uplo,
character  trans,
character  diag,
integer  n,
integer  kd,
integer  nrhs,
complex*16, dimension( ldab, * )  ab,
integer  ldab,
double precision  scale,
double precision, dimension( * )  cnorm,
double precision  tscal,
complex*16, dimension( ldx, * )  x,
integer  ldx,
complex*16, dimension( ldb, * )  b,
integer  ldb,
complex*16, dimension( * )  work,
double precision  resid 
)

ZTBT03

Purpose:
 ZTBT03 computes the residual for the solution to a scaled triangular
 system of equations  A*x = s*b,  A**T *x = s*b,  or  A**H *x = s*b
 when A is a triangular band matrix.  Here A**T  denotes the transpose
 of A, A**H denotes the conjugate transpose of A, s is a scalar, and
 x and b are N by NRHS matrices.  The test ratio is the maximum over
 the number of right hand sides of
    norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
 where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the matrix A is upper or lower triangular.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]TRANS
          TRANS is CHARACTER*1
          Specifies the operation applied to A.
          = 'N':  A *x = s*b     (No transpose)
          = 'T':  A**T *x = s*b  (Transpose)
          = 'C':  A**H *x = s*b  (Conjugate transpose)
[in]DIAG
          DIAG is CHARACTER*1
          Specifies whether or not the matrix A is unit triangular.
          = 'N':  Non-unit triangular
          = 'U':  Unit triangular
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]KD
          KD is INTEGER
          The number of superdiagonals or subdiagonals of the
          triangular band matrix A.  KD >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices X and B.  NRHS >= 0.
[in]AB
          AB is COMPLEX*16 array, dimension (LDAB,N)
          The upper or lower triangular band matrix A, stored in the
          first kd+1 rows of the array. The j-th column of A is stored
          in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
[in]LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.
[in]SCALE
          SCALE is DOUBLE PRECISION
          The scaling factor s used in solving the triangular system.
[in]CNORM
          CNORM is DOUBLE PRECISION array, dimension (N)
          The 1-norms of the columns of A, not counting the diagonal.
[in]TSCAL
          TSCAL is DOUBLE PRECISION
          The scaling factor used in computing the 1-norms in CNORM.
          CNORM actually contains the column norms of TSCAL*A.
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors for the system of linear
          equations.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[in]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          The right hand side vectors for the system of linear
          equations.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]WORK
          WORK is COMPLEX*16 array, dimension (N)
[out]RESID
          RESID is DOUBLE PRECISION
          The maximum over the number of right hand sides of
          norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 174 of file ztbt03.f.

177*
178* -- LAPACK test routine --
179* -- LAPACK is a software package provided by Univ. of Tennessee, --
180* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
181*
182* .. Scalar Arguments ..
183 CHARACTER DIAG, TRANS, UPLO
184 INTEGER KD, LDAB, LDB, LDX, N, NRHS
185 DOUBLE PRECISION RESID, SCALE, TSCAL
186* ..
187* .. Array Arguments ..
188 DOUBLE PRECISION CNORM( * )
189 COMPLEX*16 AB( LDAB, * ), B( LDB, * ), WORK( * ),
190 $ X( LDX, * )
191* ..
192*
193* =====================================================================
194*
195*
196* .. Parameters ..
197 DOUBLE PRECISION ONE, ZERO
198 parameter( one = 1.0d+0, zero = 0.0d+0 )
199* ..
200* .. Local Scalars ..
201 INTEGER IX, J
202 DOUBLE PRECISION EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
203* ..
204* .. External Functions ..
205 LOGICAL LSAME
206 INTEGER IZAMAX
207 DOUBLE PRECISION DLAMCH
208 EXTERNAL lsame, izamax, dlamch
209* ..
210* .. External Subroutines ..
211 EXTERNAL zaxpy, zcopy, zdscal, ztbmv
212* ..
213* .. Intrinsic Functions ..
214 INTRINSIC abs, dble, dcmplx, max
215* ..
216* .. Executable Statements ..
217*
218* Quick exit if N = 0
219*
220 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
221 resid = zero
222 RETURN
223 END IF
224 eps = dlamch( 'Epsilon' )
225 smlnum = dlamch( 'Safe minimum' )
226*
227* Compute the norm of the triangular matrix A using the column
228* norms already computed by ZLATBS.
229*
230 tnorm = zero
231 IF( lsame( diag, 'N' ) ) THEN
232 IF( lsame( uplo, 'U' ) ) THEN
233 DO 10 j = 1, n
234 tnorm = max( tnorm, tscal*abs( ab( kd+1, j ) )+
235 $ cnorm( j ) )
236 10 CONTINUE
237 ELSE
238 DO 20 j = 1, n
239 tnorm = max( tnorm, tscal*abs( ab( 1, j ) )+cnorm( j ) )
240 20 CONTINUE
241 END IF
242 ELSE
243 DO 30 j = 1, n
244 tnorm = max( tnorm, tscal+cnorm( j ) )
245 30 CONTINUE
246 END IF
247*
248* Compute the maximum over the number of right hand sides of
249* norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
250*
251 resid = zero
252 DO 40 j = 1, nrhs
253 CALL zcopy( n, x( 1, j ), 1, work, 1 )
254 ix = izamax( n, work, 1 )
255 xnorm = max( one, abs( x( ix, j ) ) )
256 xscal = ( one / xnorm ) / dble( kd+1 )
257 CALL zdscal( n, xscal, work, 1 )
258 CALL ztbmv( uplo, trans, diag, n, kd, ab, ldab, work, 1 )
259 CALL zaxpy( n, dcmplx( -scale*xscal ), b( 1, j ), 1, work, 1 )
260 ix = izamax( n, work, 1 )
261 err = tscal*abs( work( ix ) )
262 ix = izamax( n, x( 1, j ), 1 )
263 xnorm = abs( x( ix, j ) )
264 IF( err*smlnum.LE.xnorm ) THEN
265 IF( xnorm.GT.zero )
266 $ err = err / xnorm
267 ELSE
268 IF( err.GT.zero )
269 $ err = one / eps
270 END IF
271 IF( err*smlnum.LE.tnorm ) THEN
272 IF( tnorm.GT.zero )
273 $ err = err / tnorm
274 ELSE
275 IF( err.GT.zero )
276 $ err = one / eps
277 END IF
278 resid = max( resid, err )
279 40 CONTINUE
280*
281 RETURN
282*
283* End of ZTBT03
284*
subroutine zaxpy(n, za, zx, incx, zy, incy)
ZAXPY
Definition zaxpy.f:88
subroutine zcopy(n, zx, incx, zy, incy)
ZCOPY
Definition zcopy.f:81
integer function izamax(n, zx, incx)
IZAMAX
Definition izamax.f:71
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine zdscal(n, da, zx, incx)
ZDSCAL
Definition zdscal.f:78
subroutine ztbmv(uplo, trans, diag, n, k, a, lda, x, incx)
ZTBMV
Definition ztbmv.f:186
Here is the call graph for this function:
Here is the caller graph for this function: