LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
|
subroutine dporfs | ( | character | uplo, |
integer | n, | ||
integer | nrhs, | ||
double precision, dimension( lda, * ) | a, | ||
integer | lda, | ||
double precision, dimension( ldaf, * ) | af, | ||
integer | ldaf, | ||
double precision, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
double precision, dimension( ldx, * ) | x, | ||
integer | ldx, | ||
double precision, dimension( * ) | ferr, | ||
double precision, dimension( * ) | berr, | ||
double precision, dimension( * ) | work, | ||
integer, dimension( * ) | iwork, | ||
integer | info | ||
) |
DPORFS
Download DPORFS + dependencies [TGZ] [ZIP] [TXT]
DPORFS improves the computed solution to a system of linear equations when the coefficient matrix is symmetric positive definite, and provides error bounds and backward error estimates for the solution.
[in] | UPLO | UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. |
[in] | N | N is INTEGER The order of the matrix A. N >= 0. |
[in] | NRHS | NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. |
[in] | A | A is DOUBLE PRECISION array, dimension (LDA,N) The symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. |
[in] | LDA | LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). |
[in] | AF | AF is DOUBLE PRECISION array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by DPOTRF. |
[in] | LDAF | LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). |
[in] | B | B is DOUBLE PRECISION array, dimension (LDB,NRHS) The right hand side matrix B. |
[in] | LDB | LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). |
[in,out] | X | X is DOUBLE PRECISION array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by DPOTRS. On exit, the improved solution matrix X. |
[in] | LDX | LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). |
[out] | FERR | FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. |
[out] | BERR | BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). |
[out] | WORK | WORK is DOUBLE PRECISION array, dimension (3*N) |
[out] | IWORK | IWORK is INTEGER array, dimension (N) |
[out] | INFO | INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value |
ITMAX is the maximum number of steps of iterative refinement.
Definition at line 181 of file dporfs.f.