150 $ LDAF, IPIV, CMODE, C,
151 $ INFO, WORK, IWORK )
159 INTEGER n, lda, ldaf, info, cmode
162 INTEGER ipiv( * ), iwork( * )
163 DOUBLE PRECISION a( lda, * ), af( ldaf, * ), work( * ),
172 DOUBLE PRECISION ainvnm, tmp
192 notrans =
lsame( trans,
'N' )
193 IF ( .NOT. notrans .AND. .NOT.
lsame(trans,
'T')
194 $ .AND. .NOT.
lsame(trans,
'C') )
THEN
196 ELSE IF( n.LT.0 )
THEN
198 ELSE IF( lda.LT.max( 1, n ) )
THEN
200 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
204 CALL xerbla(
'DLA_GERCOND', -info )
218 IF ( cmode .EQ. 1 )
THEN
220 tmp = tmp + abs( a( i, j ) * c( j ) )
222 ELSE IF ( cmode .EQ. 0 )
THEN
224 tmp = tmp + abs( a( i, j ) )
228 tmp = tmp + abs( a( i, j ) / c( j ) )
236 IF ( cmode .EQ. 1 )
THEN
238 tmp = tmp + abs( a( j, i ) * c( j ) )
240 ELSE IF ( cmode .EQ. 0 )
THEN
242 tmp = tmp + abs( a( j, i ) )
246 tmp = tmp + abs( a( j, i ) / c( j ) )
259 CALL dlacn2( n, work( n+1 ), work, iwork, ainvnm, kase, isave )
266 work(i) = work(i) * work(2*n+i)
270 CALL dgetrs(
'No transpose', n, 1, af, ldaf, ipiv,
273 CALL dgetrs(
'Transpose', n, 1, af, ldaf, ipiv,
279 IF ( cmode .EQ. 1 )
THEN
281 work( i ) = work( i ) / c( i )
283 ELSE IF ( cmode .EQ. -1 )
THEN
285 work( i ) = work( i ) * c( i )
292 IF ( cmode .EQ. 1 )
THEN
294 work( i ) = work( i ) / c( i )
296 ELSE IF ( cmode .EQ. -1 )
THEN
298 work( i ) = work( i ) * c( i )
303 CALL dgetrs(
'Transpose', n, 1, af, ldaf, ipiv,
306 CALL dgetrs(
'No transpose', n, 1, af, ldaf, ipiv,
313 work( i ) = work( i ) * work( 2*n+i )
321 IF( ainvnm .NE. 0.0d+0 )
subroutine xerbla(srname, info)
subroutine dgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)
DGETRS
double precision function dla_gercond(trans, n, a, lda, af, ldaf, ipiv, cmode, c, info, work, iwork)
DLA_GERCOND estimates the Skeel condition number for a general matrix.
subroutine dlacn2(n, v, x, isgn, est, kase, isave)
DLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
logical function lsame(ca, cb)
LSAME