LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ drotg()

subroutine drotg ( real(wp)  a,
real(wp)  b,
real(wp)  c,
real(wp)  s 
)

DROTG

Purpose:
 DROTG constructs a plane rotation
    [  c  s ] [ a ] = [ r ]
    [ -s  c ] [ b ]   [ 0 ]
 satisfying c**2 + s**2 = 1.

 The computation uses the formulas
    sigma = sgn(a)    if |a| >  |b|
          = sgn(b)    if |b| >= |a|
    r = sigma*sqrt( a**2 + b**2 )
    c = 1; s = 0      if r = 0
    c = a/r; s = b/r  if r != 0
 The subroutine also computes
    z = s    if |a| > |b|,
      = 1/c  if |b| >= |a| and c != 0
      = 1    if c = 0
 This allows c and s to be reconstructed from z as follows:
    If z = 1, set c = 0, s = 1.
    If |z| < 1, set c = sqrt(1 - z**2) and s = z.
    If |z| > 1, set c = 1/z and s = sqrt( 1 - c**2).
See also
lartg: generate plane rotation, more accurate than BLAS rot,
lartgp: generate plane rotation, more accurate than BLAS rot
Parameters
[in,out]A
          A is DOUBLE PRECISION
          On entry, the scalar a.
          On exit, the scalar r.
[in,out]B
          B is DOUBLE PRECISION
          On entry, the scalar b.
          On exit, the scalar z.
[out]C
          C is DOUBLE PRECISION
          The scalar c.
[out]S
          S is DOUBLE PRECISION
          The scalar s.
Author
Edward Anderson, Lockheed Martin
Contributors:
Weslley Pereira, University of Colorado Denver, USA
Further Details:
  Anderson E. (2017)
  Algorithm 978: Safe Scaling in the Level 1 BLAS
  ACM Trans Math Softw 44:1--28
  https://doi.org/10.1145/3061665

Definition at line 91 of file drotg.f90.

92 integer, parameter :: wp = kind(1.d0)
93!
94! -- Reference BLAS level1 routine --
95! -- Reference BLAS is a software package provided by Univ. of Tennessee, --
96! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
97!
98! .. Constants ..
99 real(wp), parameter :: zero = 0.0_wp
100 real(wp), parameter :: one = 1.0_wp
101! ..
102! .. Scaling constants ..
103 real(wp), parameter :: safmin = real(radix(0._wp),wp)**max( &
104 minexponent(0._wp)-1, &
105 1-maxexponent(0._wp) &
106 )
107 real(wp), parameter :: safmax = real(radix(0._wp),wp)**max( &
108 1-minexponent(0._wp), &
109 maxexponent(0._wp)-1 &
110 )
111! ..
112! .. Scalar Arguments ..
113 real(wp) :: a, b, c, s
114! ..
115! .. Local Scalars ..
116 real(wp) :: anorm, bnorm, scl, sigma, r, z
117! ..
118 anorm = abs(a)
119 bnorm = abs(b)
120 if( bnorm == zero ) then
121 c = one
122 s = zero
123 b = zero
124 else if( anorm == zero ) then
125 c = zero
126 s = one
127 a = b
128 b = one
129 else
130 scl = min( safmax, max( safmin, anorm, bnorm ) )
131 if( anorm > bnorm ) then
132 sigma = sign(one,a)
133 else
134 sigma = sign(one,b)
135 end if
136 r = sigma*( scl*sqrt((a/scl)**2 + (b/scl)**2) )
137 c = a/r
138 s = b/r
139 if( anorm > bnorm ) then
140 z = s
141 else if( c /= zero ) then
142 z = one/c
143 else
144 z = one
145 end if
146 a = r
147 b = z
148 end if
149 return
Here is the caller graph for this function: