LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine srotg | ( | real(wp) | a, |
real(wp) | b, | ||
real(wp) | c, | ||
real(wp) | s ) |
SROTG
!> !> SROTG constructs a plane rotation !> [ c s ] [ a ] = [ r ] !> [ -s c ] [ b ] [ 0 ] !> satisfying c**2 + s**2 = 1. !> !> The computation uses the formulas !> sigma = sgn(a) if |a| > |b| !> = sgn(b) if |b| >= |a| !> r = sigma*sqrt( a**2 + b**2 ) !> c = 1; s = 0 if r = 0 !> c = a/r; s = b/r if r != 0 !> The subroutine also computes !> z = s if |a| > |b|, !> = 1/c if |b| >= |a| and c != 0 !> = 1 if c = 0 !> This allows c and s to be reconstructed from z as follows: !> If z = 1, set c = 0, s = 1. !> If |z| < 1, set c = sqrt(1 - z**2) and s = z. !> If |z| > 1, set c = 1/z and s = sqrt( 1 - c**2). !> !>
[in,out] | A | !> A is REAL !> On entry, the scalar a. !> On exit, the scalar r. !> |
[in,out] | B | !> B is REAL !> On entry, the scalar b. !> On exit, the scalar z. !> |
[out] | C | !> C is REAL !> The scalar c. !> |
[out] | S | !> S is REAL !> The scalar s. !> |
!> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !>
Definition at line 91 of file srotg.f90.