LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
|
subroutine srotg | ( | real(wp) | a, |
real(wp) | b, | ||
real(wp) | c, | ||
real(wp) | s | ||
) |
SROTG
SROTG constructs a plane rotation [ c s ] [ a ] = [ r ] [ -s c ] [ b ] [ 0 ] satisfying c**2 + s**2 = 1. The computation uses the formulas sigma = sgn(a) if |a| > |b| = sgn(b) if |b| >= |a| r = sigma*sqrt( a**2 + b**2 ) c = 1; s = 0 if r = 0 c = a/r; s = b/r if r != 0 The subroutine also computes z = s if |a| > |b|, = 1/c if |b| >= |a| and c != 0 = 1 if c = 0 This allows c and s to be reconstructed from z as follows: If z = 1, set c = 0, s = 1. If |z| < 1, set c = sqrt(1 - z**2) and s = z. If |z| > 1, set c = 1/z and s = sqrt( 1 - c**2).
[in,out] | A | A is REAL On entry, the scalar a. On exit, the scalar r. |
[in,out] | B | B is REAL On entry, the scalar b. On exit, the scalar z. |
[out] | C | C is REAL The scalar c. |
[out] | S | S is REAL The scalar s. |
Anderson E. (2017) Algorithm 978: Safe Scaling in the Level 1 BLAS ACM Trans Math Softw 44:1--28 https://doi.org/10.1145/3061665
Definition at line 91 of file srotg.f90.