LAPACK  3.10.1
LAPACK: Linear Algebra PACKage

◆ dchksy_rk()

subroutine dchksy_rk ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
double precision, dimension( * )  A,
double precision, dimension( * )  AFAC,
double precision, dimension( * )  E,
double precision, dimension( * )  AINV,
double precision, dimension( * )  B,
double precision, dimension( * )  X,
double precision, dimension( * )  XACT,
double precision, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

DCHKSY_RK

Purpose:
 DCHKSY_RK tests DSYTRF_RK, -TRI_3, -TRS_3, and -CON_3.
Parameters
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]E
          E is DOUBLE PRECISION array, dimension (NMAX)
[out]AINV
          AINV is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]B
          B is DOUBLE PRECISION array, dimension (NMAX*NSMAX),
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is DOUBLE PRECISION array, dimension (NMAX*NSMAX),
          where NSMAX is the largest entry in NSVAL.
[out]XACT
          XACT is DOUBLE PRECISION array, dimension (NMAX*NSMAX),
          where NSMAX is the largest entry in NSVAL.
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX))
[out]IWORK
          IWORK is INTEGER array, dimension (2*NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 173 of file dchksy_rk.f.

176 *
177 * -- LAPACK test routine --
178 * -- LAPACK is a software package provided by Univ. of Tennessee, --
179 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
180 *
181 * .. Scalar Arguments ..
182  LOGICAL TSTERR
183  INTEGER NMAX, NN, NNB, NNS, NOUT
184  DOUBLE PRECISION THRESH
185 * ..
186 * .. Array Arguments ..
187  LOGICAL DOTYPE( * )
188  INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
189  DOUBLE PRECISION A( * ), AFAC( * ), AINV( * ), B( * ), E( * ),
190  $ RWORK( * ), WORK( * ), X( * ), XACT( * )
191 * ..
192 *
193 * =====================================================================
194 *
195 * .. Parameters ..
196  DOUBLE PRECISION ZERO, ONE
197  parameter( zero = 0.0d+0, one = 1.0d+0 )
198  DOUBLE PRECISION EIGHT, SEVTEN
199  parameter( eight = 8.0d+0, sevten = 17.0d+0 )
200  INTEGER NTYPES
201  parameter( ntypes = 10 )
202  INTEGER NTESTS
203  parameter( ntests = 7 )
204 * ..
205 * .. Local Scalars ..
206  LOGICAL TRFCON, ZEROT
207  CHARACTER DIST, TYPE, UPLO, XTYPE
208  CHARACTER*3 PATH, MATPATH
209  INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
210  $ ITEMP, IUPLO, IZERO, J, K, KL, KU, LDA, LWORK,
211  $ MODE, N, NB, NERRS, NFAIL, NIMAT, NRHS, NRUN,
212  $ NT
213  DOUBLE PRECISION ALPHA, ANORM, CNDNUM, CONST, DTEMP, SING_MAX,
214  $ SING_MIN, RCOND, RCONDC
215 * ..
216 * .. Local Arrays ..
217  CHARACTER UPLOS( 2 )
218  INTEGER IDUMMY( 1 ), ISEED( 4 ), ISEEDY( 4 )
219  DOUBLE PRECISION BLOCK( 2, 2 ), DDUMMY( 1 ), RESULT( NTESTS )
220 * ..
221 * .. External Functions ..
222  DOUBLE PRECISION DGET06, DLANGE, DLANSY
223  EXTERNAL dget06, dlange, dlansy
224 * ..
225 * .. External Subroutines ..
226  EXTERNAL alaerh, alahd, alasum, derrsy, dgesvd, dget04,
229  $ dsytrs_3, xlaenv
230 * ..
231 * .. Intrinsic Functions ..
232  INTRINSIC max, min, sqrt
233 * ..
234 * .. Scalars in Common ..
235  LOGICAL LERR, OK
236  CHARACTER*32 SRNAMT
237  INTEGER INFOT, NUNIT
238 * ..
239 * .. Common blocks ..
240  COMMON / infoc / infot, nunit, ok, lerr
241  COMMON / srnamc / srnamt
242 * ..
243 * .. Data statements ..
244  DATA iseedy / 1988, 1989, 1990, 1991 /
245  DATA uplos / 'U', 'L' /
246 * ..
247 * .. Executable Statements ..
248 *
249 * Initialize constants and the random number seed.
250 *
251  alpha = ( one+sqrt( sevten ) ) / eight
252 *
253 * Test path
254 *
255  path( 1: 1 ) = 'Double precision'
256  path( 2: 3 ) = 'SK'
257 *
258 * Path to generate matrices
259 *
260  matpath( 1: 1 ) = 'Double precision'
261  matpath( 2: 3 ) = 'SY'
262 *
263  nrun = 0
264  nfail = 0
265  nerrs = 0
266  DO 10 i = 1, 4
267  iseed( i ) = iseedy( i )
268  10 CONTINUE
269 *
270 * Test the error exits
271 *
272  IF( tsterr )
273  $ CALL derrsy( path, nout )
274  infot = 0
275 *
276 * Set the minimum block size for which the block routine should
277 * be used, which will be later returned by ILAENV
278 *
279  CALL xlaenv( 2, 2 )
280 *
281 * Do for each value of N in NVAL
282 *
283  DO 270 in = 1, nn
284  n = nval( in )
285  lda = max( n, 1 )
286  xtype = 'N'
287  nimat = ntypes
288  IF( n.LE.0 )
289  $ nimat = 1
290 *
291  izero = 0
292 *
293 * Do for each value of matrix type IMAT
294 *
295  DO 260 imat = 1, nimat
296 *
297 * Do the tests only if DOTYPE( IMAT ) is true.
298 *
299  IF( .NOT.dotype( imat ) )
300  $ GO TO 260
301 *
302 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
303 *
304  zerot = imat.GE.3 .AND. imat.LE.6
305  IF( zerot .AND. n.LT.imat-2 )
306  $ GO TO 260
307 *
308 * Do first for UPLO = 'U', then for UPLO = 'L'
309 *
310  DO 250 iuplo = 1, 2
311  uplo = uplos( iuplo )
312 *
313 * Begin generate the test matrix A.
314 *
315 * Set up parameters with DLATB4 for the matrix generator
316 * based on the type of matrix to be generated.
317 *
318  CALL dlatb4( matpath, imat, n, n, TYPE, KL, KU, ANORM,
319  $ MODE, CNDNUM, DIST )
320 *
321 * Generate a matrix with DLATMS.
322 *
323  srnamt = 'DLATMS'
324  CALL dlatms( n, n, dist, iseed, TYPE, RWORK, MODE,
325  $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
326  $ INFO )
327 *
328 * Check error code from DLATMS and handle error.
329 *
330  IF( info.NE.0 ) THEN
331  CALL alaerh( path, 'DLATMS', info, 0, uplo, n, n, -1,
332  $ -1, -1, imat, nfail, nerrs, nout )
333 *
334 * Skip all tests for this generated matrix
335 *
336  GO TO 250
337  END IF
338 *
339 * For matrix types 3-6, zero one or more rows and
340 * columns of the matrix to test that INFO is returned
341 * correctly.
342 *
343  IF( zerot ) THEN
344  IF( imat.EQ.3 ) THEN
345  izero = 1
346  ELSE IF( imat.EQ.4 ) THEN
347  izero = n
348  ELSE
349  izero = n / 2 + 1
350  END IF
351 *
352  IF( imat.LT.6 ) THEN
353 *
354 * Set row and column IZERO to zero.
355 *
356  IF( iuplo.EQ.1 ) THEN
357  ioff = ( izero-1 )*lda
358  DO 20 i = 1, izero - 1
359  a( ioff+i ) = zero
360  20 CONTINUE
361  ioff = ioff + izero
362  DO 30 i = izero, n
363  a( ioff ) = zero
364  ioff = ioff + lda
365  30 CONTINUE
366  ELSE
367  ioff = izero
368  DO 40 i = 1, izero - 1
369  a( ioff ) = zero
370  ioff = ioff + lda
371  40 CONTINUE
372  ioff = ioff - izero
373  DO 50 i = izero, n
374  a( ioff+i ) = zero
375  50 CONTINUE
376  END IF
377  ELSE
378  IF( iuplo.EQ.1 ) THEN
379 *
380 * Set the first IZERO rows and columns to zero.
381 *
382  ioff = 0
383  DO 70 j = 1, n
384  i2 = min( j, izero )
385  DO 60 i = 1, i2
386  a( ioff+i ) = zero
387  60 CONTINUE
388  ioff = ioff + lda
389  70 CONTINUE
390  ELSE
391 *
392 * Set the last IZERO rows and columns to zero.
393 *
394  ioff = 0
395  DO 90 j = 1, n
396  i1 = max( j, izero )
397  DO 80 i = i1, n
398  a( ioff+i ) = zero
399  80 CONTINUE
400  ioff = ioff + lda
401  90 CONTINUE
402  END IF
403  END IF
404  ELSE
405  izero = 0
406  END IF
407 *
408 * End generate the test matrix A.
409 *
410 *
411 * Do for each value of NB in NBVAL
412 *
413  DO 240 inb = 1, nnb
414 *
415 * Set the optimal blocksize, which will be later
416 * returned by ILAENV.
417 *
418  nb = nbval( inb )
419  CALL xlaenv( 1, nb )
420 *
421 * Copy the test matrix A into matrix AFAC which
422 * will be factorized in place. This is needed to
423 * preserve the test matrix A for subsequent tests.
424 *
425  CALL dlacpy( uplo, n, n, a, lda, afac, lda )
426 *
427 * Compute the L*D*L**T or U*D*U**T factorization of the
428 * matrix. IWORK stores details of the interchanges and
429 * the block structure of D. AINV is a work array for
430 * block factorization, LWORK is the length of AINV.
431 *
432  lwork = max( 2, nb )*lda
433  srnamt = 'DSYTRF_RK'
434  CALL dsytrf_rk( uplo, n, afac, lda, e, iwork, ainv,
435  $ lwork, info )
436 *
437 * Adjust the expected value of INFO to account for
438 * pivoting.
439 *
440  k = izero
441  IF( k.GT.0 ) THEN
442  100 CONTINUE
443  IF( iwork( k ).LT.0 ) THEN
444  IF( iwork( k ).NE.-k ) THEN
445  k = -iwork( k )
446  GO TO 100
447  END IF
448  ELSE IF( iwork( k ).NE.k ) THEN
449  k = iwork( k )
450  GO TO 100
451  END IF
452  END IF
453 *
454 * Check error code from DSYTRF_RK and handle error.
455 *
456  IF( info.NE.k)
457  $ CALL alaerh( path, 'DSYTRF_RK', info, k,
458  $ uplo, n, n, -1, -1, nb, imat,
459  $ nfail, nerrs, nout )
460 *
461 * Set the condition estimate flag if the INFO is not 0.
462 *
463  IF( info.NE.0 ) THEN
464  trfcon = .true.
465  ELSE
466  trfcon = .false.
467  END IF
468 *
469 *+ TEST 1
470 * Reconstruct matrix from factors and compute residual.
471 *
472  CALL dsyt01_3( uplo, n, a, lda, afac, lda, e, iwork,
473  $ ainv, lda, rwork, result( 1 ) )
474  nt = 1
475 *
476 *+ TEST 2
477 * Form the inverse and compute the residual,
478 * if the factorization was competed without INFO > 0
479 * (i.e. there is no zero rows and columns).
480 * Do it only for the first block size.
481 *
482  IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
483  CALL dlacpy( uplo, n, n, afac, lda, ainv, lda )
484  srnamt = 'DSYTRI_3'
485 *
486 * Another reason that we need to compute the inverse
487 * is that DPOT03 produces RCONDC which is used later
488 * in TEST6 and TEST7.
489 *
490  lwork = (n+nb+1)*(nb+3)
491  CALL dsytri_3( uplo, n, ainv, lda, e, iwork, work,
492  $ lwork, info )
493 *
494 * Check error code from DSYTRI_3 and handle error.
495 *
496  IF( info.NE.0 )
497  $ CALL alaerh( path, 'DSYTRI_3', info, -1,
498  $ uplo, n, n, -1, -1, -1, imat,
499  $ nfail, nerrs, nout )
500 *
501 * Compute the residual for a symmetric matrix times
502 * its inverse.
503 *
504  CALL dpot03( uplo, n, a, lda, ainv, lda, work, lda,
505  $ rwork, rcondc, result( 2 ) )
506  nt = 2
507  END IF
508 *
509 * Print information about the tests that did not pass
510 * the threshold.
511 *
512  DO 110 k = 1, nt
513  IF( result( k ).GE.thresh ) THEN
514  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
515  $ CALL alahd( nout, path )
516  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
517  $ result( k )
518  nfail = nfail + 1
519  END IF
520  110 CONTINUE
521  nrun = nrun + nt
522 *
523 *+ TEST 3
524 * Compute largest element in U or L
525 *
526  result( 3 ) = zero
527  dtemp = zero
528 *
529  const = one / ( one-alpha )
530 *
531  IF( iuplo.EQ.1 ) THEN
532 *
533 * Compute largest element in U
534 *
535  k = n
536  120 CONTINUE
537  IF( k.LE.1 )
538  $ GO TO 130
539 *
540  IF( iwork( k ).GT.zero ) THEN
541 *
542 * Get max absolute value from elements
543 * in column k in in U
544 *
545  dtemp = dlange( 'M', k-1, 1,
546  $ afac( ( k-1 )*lda+1 ), lda, rwork )
547  ELSE
548 *
549 * Get max absolute value from elements
550 * in columns k and k-1 in U
551 *
552  dtemp = dlange( 'M', k-2, 2,
553  $ afac( ( k-2 )*lda+1 ), lda, rwork )
554  k = k - 1
555 *
556  END IF
557 *
558 * DTEMP should be bounded by CONST
559 *
560  dtemp = dtemp - const + thresh
561  IF( dtemp.GT.result( 3 ) )
562  $ result( 3 ) = dtemp
563 *
564  k = k - 1
565 *
566  GO TO 120
567  130 CONTINUE
568 *
569  ELSE
570 *
571 * Compute largest element in L
572 *
573  k = 1
574  140 CONTINUE
575  IF( k.GE.n )
576  $ GO TO 150
577 *
578  IF( iwork( k ).GT.zero ) THEN
579 *
580 * Get max absolute value from elements
581 * in column k in in L
582 *
583  dtemp = dlange( 'M', n-k, 1,
584  $ afac( ( k-1 )*lda+k+1 ), lda, rwork )
585  ELSE
586 *
587 * Get max absolute value from elements
588 * in columns k and k+1 in L
589 *
590  dtemp = dlange( 'M', n-k-1, 2,
591  $ afac( ( k-1 )*lda+k+2 ), lda, rwork )
592  k = k + 1
593 *
594  END IF
595 *
596 * DTEMP should be bounded by CONST
597 *
598  dtemp = dtemp - const + thresh
599  IF( dtemp.GT.result( 3 ) )
600  $ result( 3 ) = dtemp
601 *
602  k = k + 1
603 *
604  GO TO 140
605  150 CONTINUE
606  END IF
607 *
608 *+ TEST 4
609 * Compute largest 2-Norm (condition number)
610 * of 2-by-2 diag blocks
611 *
612  result( 4 ) = zero
613  dtemp = zero
614 *
615  const = ( one+alpha ) / ( one-alpha )
616  CALL dlacpy( uplo, n, n, afac, lda, ainv, lda )
617 *
618  IF( iuplo.EQ.1 ) THEN
619 *
620 * Loop backward for UPLO = 'U'
621 *
622  k = n
623  160 CONTINUE
624  IF( k.LE.1 )
625  $ GO TO 170
626 *
627  IF( iwork( k ).LT.zero ) THEN
628 *
629 * Get the two singular values
630 * (real and non-negative) of a 2-by-2 block,
631 * store them in RWORK array
632 *
633  block( 1, 1 ) = afac( ( k-2 )*lda+k-1 )
634  block( 1, 2 ) = e( k )
635  block( 2, 1 ) = block( 1, 2 )
636  block( 2, 2 ) = afac( (k-1)*lda+k )
637 *
638  CALL dgesvd( 'N', 'N', 2, 2, block, 2, rwork,
639  $ ddummy, 1, ddummy, 1,
640  $ work, 10, info )
641 *
642  sing_max = rwork( 1 )
643  sing_min = rwork( 2 )
644 *
645  dtemp = sing_max / sing_min
646 *
647 * DTEMP should be bounded by CONST
648 *
649  dtemp = dtemp - const + thresh
650  IF( dtemp.GT.result( 4 ) )
651  $ result( 4 ) = dtemp
652  k = k - 1
653 *
654  END IF
655 *
656  k = k - 1
657 *
658  GO TO 160
659  170 CONTINUE
660 *
661  ELSE
662 *
663 * Loop forward for UPLO = 'L'
664 *
665  k = 1
666  180 CONTINUE
667  IF( k.GE.n )
668  $ GO TO 190
669 *
670  IF( iwork( k ).LT.zero ) THEN
671 *
672 * Get the two singular values
673 * (real and non-negative) of a 2-by-2 block,
674 * store them in RWORK array
675 *
676  block( 1, 1 ) = afac( ( k-1 )*lda+k )
677  block( 2, 1 ) = e( k )
678  block( 1, 2 ) = block( 2, 1 )
679  block( 2, 2 ) = afac( k*lda+k+1 )
680 *
681  CALL dgesvd( 'N', 'N', 2, 2, block, 2, rwork,
682  $ ddummy, 1, ddummy, 1,
683  $ work, 10, info )
684 *
685 *
686  sing_max = rwork( 1 )
687  sing_min = rwork( 2 )
688 *
689  dtemp = sing_max / sing_min
690 *
691 * DTEMP should be bounded by CONST
692 *
693  dtemp = dtemp - const + thresh
694  IF( dtemp.GT.result( 4 ) )
695  $ result( 4 ) = dtemp
696  k = k + 1
697 *
698  END IF
699 *
700  k = k + 1
701 *
702  GO TO 180
703  190 CONTINUE
704  END IF
705 *
706 * Print information about the tests that did not pass
707 * the threshold.
708 *
709  DO 200 k = 3, 4
710  IF( result( k ).GE.thresh ) THEN
711  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
712  $ CALL alahd( nout, path )
713  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
714  $ result( k )
715  nfail = nfail + 1
716  END IF
717  200 CONTINUE
718  nrun = nrun + 2
719 *
720 * Skip the other tests if this is not the first block
721 * size.
722 *
723  IF( inb.GT.1 )
724  $ GO TO 240
725 *
726 * Do only the condition estimate if INFO is not 0.
727 *
728  IF( trfcon ) THEN
729  rcondc = zero
730  GO TO 230
731  END IF
732 *
733 * Do for each value of NRHS in NSVAL.
734 *
735  DO 220 irhs = 1, nns
736  nrhs = nsval( irhs )
737 *
738 *+ TEST 5 ( Using TRS_3)
739 * Solve and compute residual for A * X = B.
740 *
741 * Choose a set of NRHS random solution vectors
742 * stored in XACT and set up the right hand side B
743 *
744  srnamt = 'DLARHS'
745  CALL dlarhs( matpath, xtype, uplo, ' ', n, n,
746  $ kl, ku, nrhs, a, lda, xact, lda,
747  $ b, lda, iseed, info )
748  CALL dlacpy( 'Full', n, nrhs, b, lda, x, lda )
749 *
750  srnamt = 'DSYTRS_3'
751  CALL dsytrs_3( uplo, n, nrhs, afac, lda, e, iwork,
752  $ x, lda, info )
753 *
754 * Check error code from DSYTRS_3 and handle error.
755 *
756  IF( info.NE.0 )
757  $ CALL alaerh( path, 'DSYTRS_3', info, 0,
758  $ uplo, n, n, -1, -1, nrhs, imat,
759  $ nfail, nerrs, nout )
760 *
761  CALL dlacpy( 'Full', n, nrhs, b, lda, work, lda )
762 *
763 * Compute the residual for the solution
764 *
765  CALL dpot02( uplo, n, nrhs, a, lda, x, lda, work,
766  $ lda, rwork, result( 5 ) )
767 *
768 *+ TEST 6
769 * Check solution from generated exact solution.
770 *
771  CALL dget04( n, nrhs, x, lda, xact, lda, rcondc,
772  $ result( 6 ) )
773 *
774 * Print information about the tests that did not pass
775 * the threshold.
776 *
777  DO 210 k = 5, 6
778  IF( result( k ).GE.thresh ) THEN
779  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
780  $ CALL alahd( nout, path )
781  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
782  $ imat, k, result( k )
783  nfail = nfail + 1
784  END IF
785  210 CONTINUE
786  nrun = nrun + 2
787 *
788 * End do for each value of NRHS in NSVAL.
789 *
790  220 CONTINUE
791 *
792 *+ TEST 7
793 * Get an estimate of RCOND = 1/CNDNUM.
794 *
795  230 CONTINUE
796  anorm = dlansy( '1', uplo, n, a, lda, rwork )
797  srnamt = 'DSYCON_3'
798  CALL dsycon_3( uplo, n, afac, lda, e, iwork, anorm,
799  $ rcond, work, iwork( n+1 ), info )
800 *
801 * Check error code from DSYCON_3 and handle error.
802 *
803  IF( info.NE.0 )
804  $ CALL alaerh( path, 'DSYCON_3', info, 0,
805  $ uplo, n, n, -1, -1, -1, imat,
806  $ nfail, nerrs, nout )
807 *
808 * Compute the test ratio to compare to values of RCOND
809 *
810  result( 7 ) = dget06( rcond, rcondc )
811 *
812 * Print information about the tests that did not pass
813 * the threshold.
814 *
815  IF( result( 7 ).GE.thresh ) THEN
816  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
817  $ CALL alahd( nout, path )
818  WRITE( nout, fmt = 9997 ) uplo, n, imat, 7,
819  $ result( 7 )
820  nfail = nfail + 1
821  END IF
822  nrun = nrun + 1
823  240 CONTINUE
824 *
825  250 CONTINUE
826  260 CONTINUE
827  270 CONTINUE
828 *
829 * Print a summary of the results.
830 *
831  CALL alasum( path, nout, nfail, nrun, nerrs )
832 *
833  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
834  $ i2, ', test ', i2, ', ratio =', g12.5 )
835  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
836  $ i2, ', test(', i2, ') =', g12.5 )
837  9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
838  $ ', test(', i2, ') =', g12.5 )
839  RETURN
840 *
841 * End of DCHKSY_RK
842 *
subroutine dlacpy(UPLO, M, N, A, LDA, B, LDB)
DLACPY copies all or part of one two-dimensional array to another.
Definition: dlacpy.f:103
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine dlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
DLARHS
Definition: dlarhs.f:205
subroutine dsyt01_3(UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C, LDC, RWORK, RESID)
DSYT01_3
Definition: dsyt01_3.f:140
subroutine dget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
DGET04
Definition: dget04.f:102
subroutine derrsy(PATH, NUNIT)
DERRSY
Definition: derrsy.f:55
subroutine dpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
DPOT02
Definition: dpot02.f:127
subroutine dpot03(UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
DPOT03
Definition: dpot03.f:125
subroutine dlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
DLATB4
Definition: dlatb4.f:120
double precision function dget06(RCOND, RCONDC)
DGET06
Definition: dget06.f:55
subroutine dlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
DLATMS
Definition: dlatms.f:321
double precision function dlange(NORM, M, N, A, LDA, WORK)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: dlange.f:114
subroutine dgesvd(JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, INFO)
DGESVD computes the singular value decomposition (SVD) for GE matrices
Definition: dgesvd.f:211
double precision function dlansy(NORM, UPLO, N, A, LDA, WORK)
DLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: dlansy.f:122
subroutine dsycon_3(UPLO, N, A, LDA, E, IPIV, ANORM, RCOND, WORK, IWORK, INFO)
DSYCON_3
Definition: dsycon_3.f:171
subroutine dsytrf_rk(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
DSYTRF_RK computes the factorization of a real symmetric indefinite matrix using the bounded Bunch-Ka...
Definition: dsytrf_rk.f:259
subroutine dsytri_3(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
DSYTRI_3
Definition: dsytri_3.f:170
subroutine dsytrs_3(UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB, INFO)
DSYTRS_3
Definition: dsytrs_3.f:165
Here is the call graph for this function:
Here is the caller graph for this function: