LAPACK  3.10.1
LAPACK: Linear Algebra PACKage

◆ dchksy_rook()

subroutine dchksy_rook ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
double precision, dimension( * )  A,
double precision, dimension( * )  AFAC,
double precision, dimension( * )  AINV,
double precision, dimension( * )  B,
double precision, dimension( * )  X,
double precision, dimension( * )  XACT,
double precision, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

DCHKSY_ROOK

Purpose:
 DCHKSY_ROOK tests DSYTRF_ROOK, -TRI_ROOK, -TRS_ROOK,
 and -CON_ROOK.
Parameters
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]AINV
          AINV is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]B
          B is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX))
[out]IWORK
          IWORK is INTEGER array, dimension (2*NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 168 of file dchksy_rook.f.

171 *
172 * -- LAPACK test routine --
173 * -- LAPACK is a software package provided by Univ. of Tennessee, --
174 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
175 *
176 * .. Scalar Arguments ..
177  LOGICAL TSTERR
178  INTEGER NMAX, NN, NNB, NNS, NOUT
179  DOUBLE PRECISION THRESH
180 * ..
181 * .. Array Arguments ..
182  LOGICAL DOTYPE( * )
183  INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
184  DOUBLE PRECISION A( * ), AFAC( * ), AINV( * ), B( * ),
185  $ RWORK( * ), WORK( * ), X( * ), XACT( * )
186 * ..
187 *
188 * =====================================================================
189 *
190 * .. Parameters ..
191  DOUBLE PRECISION ZERO, ONE
192  parameter( zero = 0.0d+0, one = 1.0d+0 )
193  DOUBLE PRECISION EIGHT, SEVTEN
194  parameter( eight = 8.0d+0, sevten = 17.0d+0 )
195  INTEGER NTYPES
196  parameter( ntypes = 10 )
197  INTEGER NTESTS
198  parameter( ntests = 7 )
199 * ..
200 * .. Local Scalars ..
201  LOGICAL TRFCON, ZEROT
202  CHARACTER DIST, TYPE, UPLO, XTYPE
203  CHARACTER*3 PATH, MATPATH
204  INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
205  $ IUPLO, IZERO, J, K, KL, KU, LDA, LWORK, MODE,
206  $ N, NB, NERRS, NFAIL, NIMAT, NRHS, NRUN, NT
207  DOUBLE PRECISION ALPHA, ANORM, CNDNUM, CONST, DTEMP, SING_MAX,
208  $ SING_MIN, RCOND, RCONDC
209 * ..
210 * .. Local Arrays ..
211  CHARACTER UPLOS( 2 )
212  INTEGER ISEED( 4 ), ISEEDY( 4 )
213  DOUBLE PRECISION BLOCK( 2, 2 ), DDUMMY( 1 ), RESULT( NTESTS )
214 * ..
215 * .. External Functions ..
216  DOUBLE PRECISION DGET06, DLANGE, DLANSY
217  EXTERNAL dget06, dlange, dlansy
218 * ..
219 * .. External Subroutines ..
220  EXTERNAL alaerh, alahd, alasum, derrsy, dget04, dlacpy,
224 * ..
225 * .. Intrinsic Functions ..
226  INTRINSIC max, min, sqrt
227 * ..
228 * .. Scalars in Common ..
229  LOGICAL LERR, OK
230  CHARACTER*32 SRNAMT
231  INTEGER INFOT, NUNIT
232 * ..
233 * .. Common blocks ..
234  COMMON / infoc / infot, nunit, ok, lerr
235  COMMON / srnamc / srnamt
236 * ..
237 * .. Data statements ..
238  DATA iseedy / 1988, 1989, 1990, 1991 /
239  DATA uplos / 'U', 'L' /
240 * ..
241 * .. Executable Statements ..
242 *
243 * Initialize constants and the random number seed.
244 *
245  alpha = ( one+sqrt( sevten ) ) / eight
246 *
247 * Test path
248 *
249  path( 1: 1 ) = 'Double precision'
250  path( 2: 3 ) = 'SR'
251 *
252 * Path to generate matrices
253 *
254  matpath( 1: 1 ) = 'Double precision'
255  matpath( 2: 3 ) = 'SY'
256 *
257  nrun = 0
258  nfail = 0
259  nerrs = 0
260  DO 10 i = 1, 4
261  iseed( i ) = iseedy( i )
262  10 CONTINUE
263 *
264 * Test the error exits
265 *
266  IF( tsterr )
267  $ CALL derrsy( path, nout )
268  infot = 0
269 *
270 * Set the minimum block size for which the block routine should
271 * be used, which will be later returned by ILAENV
272 *
273  CALL xlaenv( 2, 2 )
274 *
275 * Do for each value of N in NVAL
276 *
277  DO 270 in = 1, nn
278  n = nval( in )
279  lda = max( n, 1 )
280  xtype = 'N'
281  nimat = ntypes
282  IF( n.LE.0 )
283  $ nimat = 1
284 *
285  izero = 0
286 *
287 * Do for each value of matrix type IMAT
288 *
289  DO 260 imat = 1, nimat
290 *
291 * Do the tests only if DOTYPE( IMAT ) is true.
292 *
293  IF( .NOT.dotype( imat ) )
294  $ GO TO 260
295 *
296 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
297 *
298  zerot = imat.GE.3 .AND. imat.LE.6
299  IF( zerot .AND. n.LT.imat-2 )
300  $ GO TO 260
301 *
302 * Do first for UPLO = 'U', then for UPLO = 'L'
303 *
304  DO 250 iuplo = 1, 2
305  uplo = uplos( iuplo )
306 *
307 * Begin generate the test matrix A.
308 *
309 * Set up parameters with DLATB4 for the matrix generator
310 * based on the type of matrix to be generated.
311 *
312  CALL dlatb4( matpath, imat, n, n, TYPE, KL, KU, ANORM,
313  $ MODE, CNDNUM, DIST )
314 *
315 * Generate a matrix with DLATMS.
316 *
317  srnamt = 'DLATMS'
318  CALL dlatms( n, n, dist, iseed, TYPE, RWORK, MODE,
319  $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
320  $ INFO )
321 *
322 * Check error code from DLATMS and handle error.
323 *
324  IF( info.NE.0 ) THEN
325  CALL alaerh( path, 'DLATMS', info, 0, uplo, n, n, -1,
326  $ -1, -1, imat, nfail, nerrs, nout )
327 *
328 * Skip all tests for this generated matrix
329 *
330  GO TO 250
331  END IF
332 *
333 * For matrix types 3-6, zero one or more rows and
334 * columns of the matrix to test that INFO is returned
335 * correctly.
336 *
337  IF( zerot ) THEN
338  IF( imat.EQ.3 ) THEN
339  izero = 1
340  ELSE IF( imat.EQ.4 ) THEN
341  izero = n
342  ELSE
343  izero = n / 2 + 1
344  END IF
345 *
346  IF( imat.LT.6 ) THEN
347 *
348 * Set row and column IZERO to zero.
349 *
350  IF( iuplo.EQ.1 ) THEN
351  ioff = ( izero-1 )*lda
352  DO 20 i = 1, izero - 1
353  a( ioff+i ) = zero
354  20 CONTINUE
355  ioff = ioff + izero
356  DO 30 i = izero, n
357  a( ioff ) = zero
358  ioff = ioff + lda
359  30 CONTINUE
360  ELSE
361  ioff = izero
362  DO 40 i = 1, izero - 1
363  a( ioff ) = zero
364  ioff = ioff + lda
365  40 CONTINUE
366  ioff = ioff - izero
367  DO 50 i = izero, n
368  a( ioff+i ) = zero
369  50 CONTINUE
370  END IF
371  ELSE
372  IF( iuplo.EQ.1 ) THEN
373 *
374 * Set the first IZERO rows and columns to zero.
375 *
376  ioff = 0
377  DO 70 j = 1, n
378  i2 = min( j, izero )
379  DO 60 i = 1, i2
380  a( ioff+i ) = zero
381  60 CONTINUE
382  ioff = ioff + lda
383  70 CONTINUE
384  ELSE
385 *
386 * Set the last IZERO rows and columns to zero.
387 *
388  ioff = 0
389  DO 90 j = 1, n
390  i1 = max( j, izero )
391  DO 80 i = i1, n
392  a( ioff+i ) = zero
393  80 CONTINUE
394  ioff = ioff + lda
395  90 CONTINUE
396  END IF
397  END IF
398  ELSE
399  izero = 0
400  END IF
401 *
402 * End generate the test matrix A.
403 *
404 *
405 * Do for each value of NB in NBVAL
406 *
407  DO 240 inb = 1, nnb
408 *
409 * Set the optimal blocksize, which will be later
410 * returned by ILAENV.
411 *
412  nb = nbval( inb )
413  CALL xlaenv( 1, nb )
414 *
415 * Copy the test matrix A into matrix AFAC which
416 * will be factorized in place. This is needed to
417 * preserve the test matrix A for subsequent tests.
418 *
419  CALL dlacpy( uplo, n, n, a, lda, afac, lda )
420 *
421 * Compute the L*D*L**T or U*D*U**T factorization of the
422 * matrix. IWORK stores details of the interchanges and
423 * the block structure of D. AINV is a work array for
424 * block factorization, LWORK is the length of AINV.
425 *
426  lwork = max( 2, nb )*lda
427  srnamt = 'DSYTRF_ROOK'
428  CALL dsytrf_rook( uplo, n, afac, lda, iwork, ainv,
429  $ lwork, info )
430 *
431 * Adjust the expected value of INFO to account for
432 * pivoting.
433 *
434  k = izero
435  IF( k.GT.0 ) THEN
436  100 CONTINUE
437  IF( iwork( k ).LT.0 ) THEN
438  IF( iwork( k ).NE.-k ) THEN
439  k = -iwork( k )
440  GO TO 100
441  END IF
442  ELSE IF( iwork( k ).NE.k ) THEN
443  k = iwork( k )
444  GO TO 100
445  END IF
446  END IF
447 *
448 * Check error code from DSYTRF_ROOK and handle error.
449 *
450  IF( info.NE.k)
451  $ CALL alaerh( path, 'DSYTRF_ROOK', info, k,
452  $ uplo, n, n, -1, -1, nb, imat,
453  $ nfail, nerrs, nout )
454 *
455 * Set the condition estimate flag if the INFO is not 0.
456 *
457  IF( info.NE.0 ) THEN
458  trfcon = .true.
459  ELSE
460  trfcon = .false.
461  END IF
462 *
463 *+ TEST 1
464 * Reconstruct matrix from factors and compute residual.
465 *
466  CALL dsyt01_rook( uplo, n, a, lda, afac, lda, iwork,
467  $ ainv, lda, rwork, result( 1 ) )
468  nt = 1
469 *
470 *+ TEST 2
471 * Form the inverse and compute the residual,
472 * if the factorization was competed without INFO > 0
473 * (i.e. there is no zero rows and columns).
474 * Do it only for the first block size.
475 *
476  IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
477  CALL dlacpy( uplo, n, n, afac, lda, ainv, lda )
478  srnamt = 'DSYTRI_ROOK'
479  CALL dsytri_rook( uplo, n, ainv, lda, iwork, work,
480  $ info )
481 *
482 * Check error code from DSYTRI_ROOK and handle error.
483 *
484  IF( info.NE.0 )
485  $ CALL alaerh( path, 'DSYTRI_ROOK', info, -1,
486  $ uplo, n, n, -1, -1, -1, imat,
487  $ nfail, nerrs, nout )
488 *
489 * Compute the residual for a symmetric matrix times
490 * its inverse.
491 *
492  CALL dpot03( uplo, n, a, lda, ainv, lda, work, lda,
493  $ rwork, rcondc, result( 2 ) )
494  nt = 2
495  END IF
496 *
497 * Print information about the tests that did not pass
498 * the threshold.
499 *
500  DO 110 k = 1, nt
501  IF( result( k ).GE.thresh ) THEN
502  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
503  $ CALL alahd( nout, path )
504  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
505  $ result( k )
506  nfail = nfail + 1
507  END IF
508  110 CONTINUE
509  nrun = nrun + nt
510 *
511 *+ TEST 3
512 * Compute largest element in U or L
513 *
514  result( 3 ) = zero
515  dtemp = zero
516 *
517  const = one / ( one-alpha )
518 *
519  IF( iuplo.EQ.1 ) THEN
520 *
521 * Compute largest element in U
522 *
523  k = n
524  120 CONTINUE
525  IF( k.LE.1 )
526  $ GO TO 130
527 *
528  IF( iwork( k ).GT.zero ) THEN
529 *
530 * Get max absolute value from elements
531 * in column k in in U
532 *
533  dtemp = dlange( 'M', k-1, 1,
534  $ afac( ( k-1 )*lda+1 ), lda, rwork )
535  ELSE
536 *
537 * Get max absolute value from elements
538 * in columns k and k-1 in U
539 *
540  dtemp = dlange( 'M', k-2, 2,
541  $ afac( ( k-2 )*lda+1 ), lda, rwork )
542  k = k - 1
543 *
544  END IF
545 *
546 * DTEMP should be bounded by CONST
547 *
548  dtemp = dtemp - const + thresh
549  IF( dtemp.GT.result( 3 ) )
550  $ result( 3 ) = dtemp
551 *
552  k = k - 1
553 *
554  GO TO 120
555  130 CONTINUE
556 *
557  ELSE
558 *
559 * Compute largest element in L
560 *
561  k = 1
562  140 CONTINUE
563  IF( k.GE.n )
564  $ GO TO 150
565 *
566  IF( iwork( k ).GT.zero ) THEN
567 *
568 * Get max absolute value from elements
569 * in column k in in L
570 *
571  dtemp = dlange( 'M', n-k, 1,
572  $ afac( ( k-1 )*lda+k+1 ), lda, rwork )
573  ELSE
574 *
575 * Get max absolute value from elements
576 * in columns k and k+1 in L
577 *
578  dtemp = dlange( 'M', n-k-1, 2,
579  $ afac( ( k-1 )*lda+k+2 ), lda, rwork )
580  k = k + 1
581 *
582  END IF
583 *
584 * DTEMP should be bounded by CONST
585 *
586  dtemp = dtemp - const + thresh
587  IF( dtemp.GT.result( 3 ) )
588  $ result( 3 ) = dtemp
589 *
590  k = k + 1
591 *
592  GO TO 140
593  150 CONTINUE
594  END IF
595 *
596 *
597 *+ TEST 4
598 * Compute largest 2-Norm (condition number)
599 * of 2-by-2 diag blocks
600 *
601  result( 4 ) = zero
602  dtemp = zero
603 *
604  const = ( one+alpha ) / ( one-alpha )
605  CALL dlacpy( uplo, n, n, afac, lda, ainv, lda )
606 *
607  IF( iuplo.EQ.1 ) THEN
608 *
609 * Loop backward for UPLO = 'U'
610 *
611  k = n
612  160 CONTINUE
613  IF( k.LE.1 )
614  $ GO TO 170
615 *
616  IF( iwork( k ).LT.zero ) THEN
617 *
618 * Get the two singular values
619 * (real and non-negative) of a 2-by-2 block,
620 * store them in RWORK array
621 *
622  block( 1, 1 ) = afac( ( k-2 )*lda+k-1 )
623  block( 1, 2 ) = afac( (k-1)*lda+k-1 )
624  block( 2, 1 ) = block( 1, 2 )
625  block( 2, 2 ) = afac( (k-1)*lda+k )
626 *
627  CALL dgesvd( 'N', 'N', 2, 2, block, 2, rwork,
628  $ ddummy, 1, ddummy, 1,
629  $ work, 10, info )
630 *
631  sing_max = rwork( 1 )
632  sing_min = rwork( 2 )
633 *
634  dtemp = sing_max / sing_min
635 *
636 * DTEMP should be bounded by CONST
637 *
638  dtemp = dtemp - const + thresh
639  IF( dtemp.GT.result( 4 ) )
640  $ result( 4 ) = dtemp
641  k = k - 1
642 *
643  END IF
644 *
645  k = k - 1
646 *
647  GO TO 160
648  170 CONTINUE
649 *
650  ELSE
651 *
652 * Loop forward for UPLO = 'L'
653 *
654  k = 1
655  180 CONTINUE
656  IF( k.GE.n )
657  $ GO TO 190
658 *
659  IF( iwork( k ).LT.zero ) THEN
660 *
661 * Get the two singular values
662 * (real and non-negative) of a 2-by-2 block,
663 * store them in RWORK array
664 *
665  block( 1, 1 ) = afac( ( k-1 )*lda+k )
666  block( 2, 1 ) = afac( ( k-1 )*lda+k+1 )
667  block( 1, 2 ) = block( 2, 1 )
668  block( 2, 2 ) = afac( k*lda+k+1 )
669 *
670  CALL dgesvd( 'N', 'N', 2, 2, block, 2, rwork,
671  $ ddummy, 1, ddummy, 1,
672  $ work, 10, info )
673 *
674 *
675  sing_max = rwork( 1 )
676  sing_min = rwork( 2 )
677 *
678  dtemp = sing_max / sing_min
679 *
680 * DTEMP should be bounded by CONST
681 *
682  dtemp = dtemp - const + thresh
683  IF( dtemp.GT.result( 4 ) )
684  $ result( 4 ) = dtemp
685  k = k + 1
686 *
687  END IF
688 *
689  k = k + 1
690 *
691  GO TO 180
692  190 CONTINUE
693  END IF
694 *
695 * Print information about the tests that did not pass
696 * the threshold.
697 *
698  DO 200 k = 3, 4
699  IF( result( k ).GE.thresh ) THEN
700  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
701  $ CALL alahd( nout, path )
702  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
703  $ result( k )
704  nfail = nfail + 1
705  END IF
706  200 CONTINUE
707  nrun = nrun + 2
708 *
709 * Skip the other tests if this is not the first block
710 * size.
711 *
712  IF( inb.GT.1 )
713  $ GO TO 240
714 *
715 * Do only the condition estimate if INFO is not 0.
716 *
717  IF( trfcon ) THEN
718  rcondc = zero
719  GO TO 230
720  END IF
721 *
722 * Do for each value of NRHS in NSVAL.
723 *
724  DO 220 irhs = 1, nns
725  nrhs = nsval( irhs )
726 *
727 *+ TEST 5 ( Using TRS_ROOK)
728 * Solve and compute residual for A * X = B.
729 *
730 * Choose a set of NRHS random solution vectors
731 * stored in XACT and set up the right hand side B
732 *
733  srnamt = 'DLARHS'
734  CALL dlarhs( matpath, xtype, uplo, ' ', n, n,
735  $ kl, ku, nrhs, a, lda, xact, lda,
736  $ b, lda, iseed, info )
737  CALL dlacpy( 'Full', n, nrhs, b, lda, x, lda )
738 *
739  srnamt = 'DSYTRS_ROOK'
740  CALL dsytrs_rook( uplo, n, nrhs, afac, lda, iwork,
741  $ x, lda, info )
742 *
743 * Check error code from DSYTRS_ROOK and handle error.
744 *
745  IF( info.NE.0 )
746  $ CALL alaerh( path, 'DSYTRS_ROOK', info, 0,
747  $ uplo, n, n, -1, -1, nrhs, imat,
748  $ nfail, nerrs, nout )
749 *
750  CALL dlacpy( 'Full', n, nrhs, b, lda, work, lda )
751 *
752 * Compute the residual for the solution
753 *
754  CALL dpot02( uplo, n, nrhs, a, lda, x, lda, work,
755  $ lda, rwork, result( 5 ) )
756 *
757 *+ TEST 6
758 * Check solution from generated exact solution.
759 *
760  CALL dget04( n, nrhs, x, lda, xact, lda, rcondc,
761  $ result( 6 ) )
762 *
763 * Print information about the tests that did not pass
764 * the threshold.
765 *
766  DO 210 k = 5, 6
767  IF( result( k ).GE.thresh ) THEN
768  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
769  $ CALL alahd( nout, path )
770  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
771  $ imat, k, result( k )
772  nfail = nfail + 1
773  END IF
774  210 CONTINUE
775  nrun = nrun + 2
776 *
777 * End do for each value of NRHS in NSVAL.
778 *
779  220 CONTINUE
780 *
781 *+ TEST 7
782 * Get an estimate of RCOND = 1/CNDNUM.
783 *
784  230 CONTINUE
785  anorm = dlansy( '1', uplo, n, a, lda, rwork )
786  srnamt = 'DSYCON_ROOK'
787  CALL dsycon_rook( uplo, n, afac, lda, iwork, anorm,
788  $ rcond, work, iwork( n+1 ), info )
789 *
790 * Check error code from DSYCON_ROOK and handle error.
791 *
792  IF( info.NE.0 )
793  $ CALL alaerh( path, 'DSYCON_ROOK', info, 0,
794  $ uplo, n, n, -1, -1, -1, imat,
795  $ nfail, nerrs, nout )
796 *
797 * Compute the test ratio to compare to values of RCOND
798 *
799  result( 7 ) = dget06( rcond, rcondc )
800 *
801 * Print information about the tests that did not pass
802 * the threshold.
803 *
804  IF( result( 7 ).GE.thresh ) THEN
805  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
806  $ CALL alahd( nout, path )
807  WRITE( nout, fmt = 9997 )uplo, n, imat, 7,
808  $ result( 7 )
809  nfail = nfail + 1
810  END IF
811  nrun = nrun + 1
812  240 CONTINUE
813 *
814  250 CONTINUE
815  260 CONTINUE
816  270 CONTINUE
817 *
818 * Print a summary of the results.
819 *
820  CALL alasum( path, nout, nfail, nrun, nerrs )
821 *
822  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
823  $ i2, ', test ', i2, ', ratio =', g12.5 )
824  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
825  $ i2, ', test(', i2, ') =', g12.5 )
826  9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
827  $ ', test(', i2, ') =', g12.5 )
828  RETURN
829 *
830 * End of DCHKSY_ROOK
831 *
subroutine dlacpy(UPLO, M, N, A, LDA, B, LDB)
DLACPY copies all or part of one two-dimensional array to another.
Definition: dlacpy.f:103
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine dlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
DLARHS
Definition: dlarhs.f:205
subroutine dsyt01_rook(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
DSYT01_ROOK
Definition: dsyt01_rook.f:124
subroutine dget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
DGET04
Definition: dget04.f:102
subroutine derrsy(PATH, NUNIT)
DERRSY
Definition: derrsy.f:55
subroutine dpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
DPOT02
Definition: dpot02.f:127
subroutine dpot03(UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
DPOT03
Definition: dpot03.f:125
subroutine dlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
DLATB4
Definition: dlatb4.f:120
double precision function dget06(RCOND, RCONDC)
DGET06
Definition: dget06.f:55
subroutine dlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
DLATMS
Definition: dlatms.f:321
double precision function dlange(NORM, M, N, A, LDA, WORK)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: dlange.f:114
subroutine dgesvd(JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, INFO)
DGESVD computes the singular value decomposition (SVD) for GE matrices
Definition: dgesvd.f:211
double precision function dlansy(NORM, UPLO, N, A, LDA, WORK)
DLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: dlansy.f:122
subroutine dsytrf_rook(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
DSYTRF_ROOK
Definition: dsytrf_rook.f:208
subroutine dsytrs_rook(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
DSYTRS_ROOK
Definition: dsytrs_rook.f:136
subroutine dsytri_rook(UPLO, N, A, LDA, IPIV, WORK, INFO)
DSYTRI_ROOK
Definition: dsytri_rook.f:129
subroutine dsycon_rook(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, IWORK, INFO)
DSYCON_ROOK
Definition: dsycon_rook.f:144
Here is the call graph for this function:
Here is the caller graph for this function: