LAPACK  3.10.1
LAPACK: Linear Algebra PACKage

◆ derrps()

subroutine derrps ( character*3  PATH,
integer  NUNIT 
)

DERRPS

Purpose:
 DERRPS tests the error exits for the DOUBLE PRECISION routines
 for DPSTRF.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 54 of file derrps.f.

55 *
56 * -- LAPACK test routine --
57 * -- LAPACK is a software package provided by Univ. of Tennessee, --
58 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
59 *
60 * .. Scalar Arguments ..
61  INTEGER NUNIT
62  CHARACTER*3 PATH
63 * ..
64 *
65 * =====================================================================
66 *
67 * .. Parameters ..
68  INTEGER NMAX
69  parameter( nmax = 4 )
70 * ..
71 * .. Local Scalars ..
72  INTEGER I, INFO, J, RANK
73 * ..
74 * .. Local Arrays ..
75  DOUBLE PRECISION A( NMAX, NMAX ), WORK( 2*NMAX )
76  INTEGER PIV( NMAX )
77 * ..
78 * .. External Subroutines ..
79  EXTERNAL alaesm, chkxer, dpstf2, dpstrf
80 * ..
81 * .. Scalars in Common ..
82  INTEGER INFOT, NOUT
83  LOGICAL LERR, OK
84  CHARACTER*32 SRNAMT
85 * ..
86 * .. Common blocks ..
87  COMMON / infoc / infot, nout, ok, lerr
88  COMMON / srnamc / srnamt
89 * ..
90 * .. Intrinsic Functions ..
91  INTRINSIC dble
92 * ..
93 * .. Executable Statements ..
94 *
95  nout = nunit
96  WRITE( nout, fmt = * )
97 *
98 * Set the variables to innocuous values.
99 *
100  DO 110 j = 1, nmax
101  DO 100 i = 1, nmax
102  a( i, j ) = 1.d0 / dble( i+j )
103 *
104  100 CONTINUE
105  piv( j ) = j
106  work( j ) = 0.d0
107  work( nmax+j ) = 0.d0
108 *
109  110 CONTINUE
110  ok = .true.
111 *
112 *
113 * Test error exits of the routines that use the Cholesky
114 * decomposition of a symmetric positive semidefinite matrix.
115 *
116 * DPSTRF
117 *
118  srnamt = 'DPSTRF'
119  infot = 1
120  CALL dpstrf( '/', 0, a, 1, piv, rank, -1.d0, work, info )
121  CALL chkxer( 'DPSTRF', infot, nout, lerr, ok )
122  infot = 2
123  CALL dpstrf( 'U', -1, a, 1, piv, rank, -1.d0, work, info )
124  CALL chkxer( 'DPSTRF', infot, nout, lerr, ok )
125  infot = 4
126  CALL dpstrf( 'U', 2, a, 1, piv, rank, -1.d0, work, info )
127  CALL chkxer( 'DPSTRF', infot, nout, lerr, ok )
128 *
129 * DPSTF2
130 *
131  srnamt = 'DPSTF2'
132  infot = 1
133  CALL dpstf2( '/', 0, a, 1, piv, rank, -1.d0, work, info )
134  CALL chkxer( 'DPSTF2', infot, nout, lerr, ok )
135  infot = 2
136  CALL dpstf2( 'U', -1, a, 1, piv, rank, -1.d0, work, info )
137  CALL chkxer( 'DPSTF2', infot, nout, lerr, ok )
138  infot = 4
139  CALL dpstf2( 'U', 2, a, 1, piv, rank, -1.d0, work, info )
140  CALL chkxer( 'DPSTF2', infot, nout, lerr, ok )
141 *
142 *
143 * Print a summary line.
144 *
145  CALL alaesm( path, ok, nout )
146 *
147  RETURN
148 *
149 * End of DERRPS
150 *
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
Definition: cblat2.f:3196
subroutine alaesm(PATH, OK, NOUT)
ALAESM
Definition: alaesm.f:63
subroutine dpstrf(UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO)
DPSTRF computes the Cholesky factorization with complete pivoting of a real symmetric positive semide...
Definition: dpstrf.f:142
subroutine dpstf2(UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO)
DPSTF2 computes the Cholesky factorization with complete pivoting of a real symmetric positive semide...
Definition: dpstf2.f:141
Here is the call graph for this function:
Here is the caller graph for this function: