LAPACK 3.11.0 LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

## ◆ ddrvsp()

 subroutine ddrvsp ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NRHS, double precision THRESH, logical TSTERR, integer NMAX, double precision, dimension( * ) A, double precision, dimension( * ) AFAC, double precision, dimension( * ) AINV, double precision, dimension( * ) B, double precision, dimension( * ) X, double precision, dimension( * ) XACT, double precision, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

DDRVSP

Purpose:
` DDRVSP tests the driver routines DSPSV and -SVX.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NRHS ``` NRHS is INTEGER The number of right hand side vectors to be generated for each linear system.``` [in] THRESH ``` THRESH is DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ``` A is DOUBLE PRECISION array, dimension (NMAX*(NMAX+1)/2)``` [out] AFAC ``` AFAC is DOUBLE PRECISION array, dimension (NMAX*(NMAX+1)/2)``` [out] AINV ``` AINV is DOUBLE PRECISION array, dimension (NMAX*(NMAX+1)/2)``` [out] B ` B is DOUBLE PRECISION array, dimension (NMAX*NRHS)` [out] X ` X is DOUBLE PRECISION array, dimension (NMAX*NRHS)` [out] XACT ` XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS)` [out] WORK ``` WORK is DOUBLE PRECISION array, dimension (NMAX*max(2,NRHS))``` [out] RWORK ` RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)` [out] IWORK ` IWORK is INTEGER array, dimension (2*NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```

Definition at line 153 of file ddrvsp.f.

156*
157* -- LAPACK test routine --
158* -- LAPACK is a software package provided by Univ. of Tennessee, --
159* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
160*
161* .. Scalar Arguments ..
162 LOGICAL TSTERR
163 INTEGER NMAX, NN, NOUT, NRHS
164 DOUBLE PRECISION THRESH
165* ..
166* .. Array Arguments ..
167 LOGICAL DOTYPE( * )
168 INTEGER IWORK( * ), NVAL( * )
169 DOUBLE PRECISION A( * ), AFAC( * ), AINV( * ), B( * ),
170 \$ RWORK( * ), WORK( * ), X( * ), XACT( * )
171* ..
172*
173* =====================================================================
174*
175* .. Parameters ..
176 DOUBLE PRECISION ONE, ZERO
177 parameter( one = 1.0d+0, zero = 0.0d+0 )
178 INTEGER NTYPES, NTESTS
179 parameter( ntypes = 10, ntests = 6 )
180 INTEGER NFACT
181 parameter( nfact = 2 )
182* ..
183* .. Local Scalars ..
184 LOGICAL ZEROT
185 CHARACTER DIST, FACT, PACKIT, TYPE, UPLO, XTYPE
186 CHARACTER*3 PATH
187 INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
188 \$ IZERO, J, K, K1, KL, KU, LDA, LWORK, MODE, N,
189 \$ NERRS, NFAIL, NIMAT, NPP, NRUN, NT
190 DOUBLE PRECISION AINVNM, ANORM, CNDNUM, RCOND, RCONDC
191* ..
192* .. Local Arrays ..
193 CHARACTER FACTS( NFACT )
194 INTEGER ISEED( 4 ), ISEEDY( 4 )
195 DOUBLE PRECISION RESULT( NTESTS )
196* ..
197* .. External Functions ..
198 DOUBLE PRECISION DGET06, DLANSP
199 EXTERNAL dget06, dlansp
200* ..
201* .. External Subroutines ..
202 EXTERNAL aladhd, alaerh, alasvm, dcopy, derrvx, dget04,
205* ..
206* .. Scalars in Common ..
207 LOGICAL LERR, OK
208 CHARACTER*32 SRNAMT
209 INTEGER INFOT, NUNIT
210* ..
211* .. Common blocks ..
212 COMMON / infoc / infot, nunit, ok, lerr
213 COMMON / srnamc / srnamt
214* ..
215* .. Intrinsic Functions ..
216 INTRINSIC max, min
217* ..
218* .. Data statements ..
219 DATA iseedy / 1988, 1989, 1990, 1991 /
220 DATA facts / 'F', 'N' /
221* ..
222* .. Executable Statements ..
223*
224* Initialize constants and the random number seed.
225*
226 path( 1: 1 ) = 'Double precision'
227 path( 2: 3 ) = 'SP'
228 nrun = 0
229 nfail = 0
230 nerrs = 0
231 DO 10 i = 1, 4
232 iseed( i ) = iseedy( i )
233 10 CONTINUE
234 lwork = max( 2*nmax, nmax*nrhs )
235*
236* Test the error exits
237*
238 IF( tsterr )
239 \$ CALL derrvx( path, nout )
240 infot = 0
241*
242* Do for each value of N in NVAL
243*
244 DO 180 in = 1, nn
245 n = nval( in )
246 lda = max( n, 1 )
247 npp = n*( n+1 ) / 2
248 xtype = 'N'
249 nimat = ntypes
250 IF( n.LE.0 )
251 \$ nimat = 1
252*
253 DO 170 imat = 1, nimat
254*
255* Do the tests only if DOTYPE( IMAT ) is true.
256*
257 IF( .NOT.dotype( imat ) )
258 \$ GO TO 170
259*
260* Skip types 3, 4, 5, or 6 if the matrix size is too small.
261*
262 zerot = imat.GE.3 .AND. imat.LE.6
263 IF( zerot .AND. n.LT.imat-2 )
264 \$ GO TO 170
265*
266* Do first for UPLO = 'U', then for UPLO = 'L'
267*
268 DO 160 iuplo = 1, 2
269 IF( iuplo.EQ.1 ) THEN
270 uplo = 'U'
271 packit = 'C'
272 ELSE
273 uplo = 'L'
274 packit = 'R'
275 END IF
276*
277* Set up parameters with DLATB4 and generate a test matrix
278* with DLATMS.
279*
280 CALL dlatb4( path, imat, n, n, TYPE, KL, KU, ANORM, MODE,
281 \$ CNDNUM, DIST )
282*
283 srnamt = 'DLATMS'
284 CALL dlatms( n, n, dist, iseed, TYPE, RWORK, MODE,
285 \$ CNDNUM, ANORM, KL, KU, PACKIT, A, LDA, WORK,
286 \$ INFO )
287*
288* Check error code from DLATMS.
289*
290 IF( info.NE.0 ) THEN
291 CALL alaerh( path, 'DLATMS', info, 0, uplo, n, n, -1,
292 \$ -1, -1, imat, nfail, nerrs, nout )
293 GO TO 160
294 END IF
295*
296* For types 3-6, zero one or more rows and columns of the
297* matrix to test that INFO is returned correctly.
298*
299 IF( zerot ) THEN
300 IF( imat.EQ.3 ) THEN
301 izero = 1
302 ELSE IF( imat.EQ.4 ) THEN
303 izero = n
304 ELSE
305 izero = n / 2 + 1
306 END IF
307*
308 IF( imat.LT.6 ) THEN
309*
310* Set row and column IZERO to zero.
311*
312 IF( iuplo.EQ.1 ) THEN
313 ioff = ( izero-1 )*izero / 2
314 DO 20 i = 1, izero - 1
315 a( ioff+i ) = zero
316 20 CONTINUE
317 ioff = ioff + izero
318 DO 30 i = izero, n
319 a( ioff ) = zero
320 ioff = ioff + i
321 30 CONTINUE
322 ELSE
323 ioff = izero
324 DO 40 i = 1, izero - 1
325 a( ioff ) = zero
326 ioff = ioff + n - i
327 40 CONTINUE
328 ioff = ioff - izero
329 DO 50 i = izero, n
330 a( ioff+i ) = zero
331 50 CONTINUE
332 END IF
333 ELSE
334 ioff = 0
335 IF( iuplo.EQ.1 ) THEN
336*
337* Set the first IZERO rows and columns to zero.
338*
339 DO 70 j = 1, n
340 i2 = min( j, izero )
341 DO 60 i = 1, i2
342 a( ioff+i ) = zero
343 60 CONTINUE
344 ioff = ioff + j
345 70 CONTINUE
346 ELSE
347*
348* Set the last IZERO rows and columns to zero.
349*
350 DO 90 j = 1, n
351 i1 = max( j, izero )
352 DO 80 i = i1, n
353 a( ioff+i ) = zero
354 80 CONTINUE
355 ioff = ioff + n - j
356 90 CONTINUE
357 END IF
358 END IF
359 ELSE
360 izero = 0
361 END IF
362*
363 DO 150 ifact = 1, nfact
364*
365* Do first for FACT = 'F', then for other values.
366*
367 fact = facts( ifact )
368*
369* Compute the condition number for comparison with
370* the value returned by DSPSVX.
371*
372 IF( zerot ) THEN
373 IF( ifact.EQ.1 )
374 \$ GO TO 150
375 rcondc = zero
376*
377 ELSE IF( ifact.EQ.1 ) THEN
378*
379* Compute the 1-norm of A.
380*
381 anorm = dlansp( '1', uplo, n, a, rwork )
382*
383* Factor the matrix A.
384*
385 CALL dcopy( npp, a, 1, afac, 1 )
386 CALL dsptrf( uplo, n, afac, iwork, info )
387*
388* Compute inv(A) and take its norm.
389*
390 CALL dcopy( npp, afac, 1, ainv, 1 )
391 CALL dsptri( uplo, n, ainv, iwork, work, info )
392 ainvnm = dlansp( '1', uplo, n, ainv, rwork )
393*
394* Compute the 1-norm condition number of A.
395*
396 IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
397 rcondc = one
398 ELSE
399 rcondc = ( one / anorm ) / ainvnm
400 END IF
401 END IF
402*
403* Form an exact solution and set the right hand side.
404*
405 srnamt = 'DLARHS'
406 CALL dlarhs( path, xtype, uplo, ' ', n, n, kl, ku,
407 \$ nrhs, a, lda, xact, lda, b, lda, iseed,
408 \$ info )
409 xtype = 'C'
410*
411* --- Test DSPSV ---
412*
413 IF( ifact.EQ.2 ) THEN
414 CALL dcopy( npp, a, 1, afac, 1 )
415 CALL dlacpy( 'Full', n, nrhs, b, lda, x, lda )
416*
417* Factor the matrix and solve the system using DSPSV.
418*
419 srnamt = 'DSPSV '
420 CALL dspsv( uplo, n, nrhs, afac, iwork, x, lda,
421 \$ info )
422*
423* Adjust the expected value of INFO to account for
424* pivoting.
425*
426 k = izero
427 IF( k.GT.0 ) THEN
428 100 CONTINUE
429 IF( iwork( k ).LT.0 ) THEN
430 IF( iwork( k ).NE.-k ) THEN
431 k = -iwork( k )
432 GO TO 100
433 END IF
434 ELSE IF( iwork( k ).NE.k ) THEN
435 k = iwork( k )
436 GO TO 100
437 END IF
438 END IF
439*
440* Check error code from DSPSV .
441*
442 IF( info.NE.k ) THEN
443 CALL alaerh( path, 'DSPSV ', info, k, uplo, n,
444 \$ n, -1, -1, nrhs, imat, nfail,
445 \$ nerrs, nout )
446 GO TO 120
447 ELSE IF( info.NE.0 ) THEN
448 GO TO 120
449 END IF
450*
451* Reconstruct matrix from factors and compute
452* residual.
453*
454 CALL dspt01( uplo, n, a, afac, iwork, ainv, lda,
455 \$ rwork, result( 1 ) )
456*
457* Compute residual of the computed solution.
458*
459 CALL dlacpy( 'Full', n, nrhs, b, lda, work, lda )
460 CALL dppt02( uplo, n, nrhs, a, x, lda, work, lda,
461 \$ rwork, result( 2 ) )
462*
463* Check solution from generated exact solution.
464*
465 CALL dget04( n, nrhs, x, lda, xact, lda, rcondc,
466 \$ result( 3 ) )
467 nt = 3
468*
469* Print information about the tests that did not pass
470* the threshold.
471*
472 DO 110 k = 1, nt
473 IF( result( k ).GE.thresh ) THEN
474 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
475 \$ CALL aladhd( nout, path )
476 WRITE( nout, fmt = 9999 )'DSPSV ', uplo, n,
477 \$ imat, k, result( k )
478 nfail = nfail + 1
479 END IF
480 110 CONTINUE
481 nrun = nrun + nt
482 120 CONTINUE
483 END IF
484*
485* --- Test DSPSVX ---
486*
487 IF( ifact.EQ.2 .AND. npp.GT.0 )
488 \$ CALL dlaset( 'Full', npp, 1, zero, zero, afac,
489 \$ npp )
490 CALL dlaset( 'Full', n, nrhs, zero, zero, x, lda )
491*
492* Solve the system and compute the condition number and
493* error bounds using DSPSVX.
494*
495 srnamt = 'DSPSVX'
496 CALL dspsvx( fact, uplo, n, nrhs, a, afac, iwork, b,
497 \$ lda, x, lda, rcond, rwork,
498 \$ rwork( nrhs+1 ), work, iwork( n+1 ),
499 \$ info )
500*
501* Adjust the expected value of INFO to account for
502* pivoting.
503*
504 k = izero
505 IF( k.GT.0 ) THEN
506 130 CONTINUE
507 IF( iwork( k ).LT.0 ) THEN
508 IF( iwork( k ).NE.-k ) THEN
509 k = -iwork( k )
510 GO TO 130
511 END IF
512 ELSE IF( iwork( k ).NE.k ) THEN
513 k = iwork( k )
514 GO TO 130
515 END IF
516 END IF
517*
518* Check the error code from DSPSVX.
519*
520 IF( info.NE.k ) THEN
521 CALL alaerh( path, 'DSPSVX', info, k, fact // uplo,
522 \$ n, n, -1, -1, nrhs, imat, nfail,
523 \$ nerrs, nout )
524 GO TO 150
525 END IF
526*
527 IF( info.EQ.0 ) THEN
528 IF( ifact.GE.2 ) THEN
529*
530* Reconstruct matrix from factors and compute
531* residual.
532*
533 CALL dspt01( uplo, n, a, afac, iwork, ainv, lda,
534 \$ rwork( 2*nrhs+1 ), result( 1 ) )
535 k1 = 1
536 ELSE
537 k1 = 2
538 END IF
539*
540* Compute residual of the computed solution.
541*
542 CALL dlacpy( 'Full', n, nrhs, b, lda, work, lda )
543 CALL dppt02( uplo, n, nrhs, a, x, lda, work, lda,
544 \$ rwork( 2*nrhs+1 ), result( 2 ) )
545*
546* Check solution from generated exact solution.
547*
548 CALL dget04( n, nrhs, x, lda, xact, lda, rcondc,
549 \$ result( 3 ) )
550*
551* Check the error bounds from iterative refinement.
552*
553 CALL dppt05( uplo, n, nrhs, a, b, lda, x, lda,
554 \$ xact, lda, rwork, rwork( nrhs+1 ),
555 \$ result( 4 ) )
556 ELSE
557 k1 = 6
558 END IF
559*
560* Compare RCOND from DSPSVX with the computed value
561* in RCONDC.
562*
563 result( 6 ) = dget06( rcond, rcondc )
564*
565* Print information about the tests that did not pass
566* the threshold.
567*
568 DO 140 k = k1, 6
569 IF( result( k ).GE.thresh ) THEN
570 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
571 \$ CALL aladhd( nout, path )
572 WRITE( nout, fmt = 9998 )'DSPSVX', fact, uplo,
573 \$ n, imat, k, result( k )
574 nfail = nfail + 1
575 END IF
576 140 CONTINUE
577 nrun = nrun + 7 - k1
578*
579 150 CONTINUE
580*
581 160 CONTINUE
582 170 CONTINUE
583 180 CONTINUE
584*
585* Print a summary of the results.
586*
587 CALL alasvm( path, nout, nfail, nrun, nerrs )
588*
589 9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
590 \$ ', test ', i2, ', ratio =', g12.5 )
591 9998 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N =', i5,
592 \$ ', type ', i2, ', test ', i2, ', ratio =', g12.5 )
593 RETURN
594*
595* End of DDRVSP
596*
subroutine dlacpy(UPLO, M, N, A, LDA, B, LDB)
DLACPY copies all or part of one two-dimensional array to another.
Definition: dlacpy.f:103
subroutine dlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: dlaset.f:110
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:73
subroutine aladhd(IOUNIT, PATH)
ALADHD
Definition: aladhd.f:90
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine dcopy(N, DX, INCX, DY, INCY)
DCOPY
Definition: dcopy.f:82
subroutine dlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
DLARHS
Definition: dlarhs.f:205
subroutine dppt02(UPLO, N, NRHS, A, X, LDX, B, LDB, RWORK, RESID)
DPPT02
Definition: dppt02.f:122
subroutine dget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
DGET04
Definition: dget04.f:102
subroutine dspt01(UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID)
DSPT01
Definition: dspt01.f:110
subroutine dlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
DLATB4
Definition: dlatb4.f:120
subroutine derrvx(PATH, NUNIT)
DERRVX
Definition: derrvx.f:55
subroutine dppt05(UPLO, N, NRHS, AP, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
DPPT05
Definition: dppt05.f:156
double precision function dget06(RCOND, RCONDC)
DGET06
Definition: dget06.f:55
subroutine dlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
DLATMS
Definition: dlatms.f:321
double precision function dlansp(NORM, UPLO, N, AP, WORK)
DLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: dlansp.f:114
subroutine dsptri(UPLO, N, AP, IPIV, WORK, INFO)
DSPTRI
Definition: dsptri.f:109
subroutine dsptrf(UPLO, N, AP, IPIV, INFO)
DSPTRF
Definition: dsptrf.f:159
subroutine dspsvx(FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO)
DSPSVX computes the solution to system of linear equations A * X = B for OTHER matrices
Definition: dspsvx.f:276
subroutine dspsv(UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)
DSPSV computes the solution to system of linear equations A * X = B for OTHER matrices
Definition: dspsv.f:162
Here is the call graph for this function:
Here is the caller graph for this function: