LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ chbgvd()

subroutine chbgvd ( character jobz,
character uplo,
integer n,
integer ka,
integer kb,
complex, dimension( ldab, * ) ab,
integer ldab,
complex, dimension( ldbb, * ) bb,
integer ldbb,
real, dimension( * ) w,
complex, dimension( ldz, * ) z,
integer ldz,
complex, dimension( * ) work,
integer lwork,
real, dimension( * ) rwork,
integer lrwork,
integer, dimension( * ) iwork,
integer liwork,
integer info )

CHBGVD

Download CHBGVD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CHBGVD computes all the eigenvalues, and optionally, the eigenvectors
!> of a complex generalized Hermitian-definite banded eigenproblem, of
!> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
!> and banded, and B is also positive definite.  If eigenvectors are
!> desired, it uses a divide and conquer algorithm.
!>
!> 
Parameters
[in]JOBZ
!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangles of A and B are stored;
!>          = 'L':  Lower triangles of A and B are stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrices A and B.  N >= 0.
!> 
[in]KA
!>          KA is INTEGER
!>          The number of superdiagonals of the matrix A if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
!> 
[in]KB
!>          KB is INTEGER
!>          The number of superdiagonals of the matrix B if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
!> 
[in,out]AB
!>          AB is COMPLEX array, dimension (LDAB, N)
!>          On entry, the upper or lower triangle of the Hermitian band
!>          matrix A, stored in the first ka+1 rows of the array.  The
!>          j-th column of A is stored in the j-th column of the array AB
!>          as follows:
!>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
!>
!>          On exit, the contents of AB are destroyed.
!> 
[in]LDAB
!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KA+1.
!> 
[in,out]BB
!>          BB is COMPLEX array, dimension (LDBB, N)
!>          On entry, the upper or lower triangle of the Hermitian band
!>          matrix B, stored in the first kb+1 rows of the array.  The
!>          j-th column of B is stored in the j-th column of the array BB
!>          as follows:
!>          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
!>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
!>
!>          On exit, the factor S from the split Cholesky factorization
!>          B = S**H*S, as returned by CPBSTF.
!> 
[in]LDBB
!>          LDBB is INTEGER
!>          The leading dimension of the array BB.  LDBB >= KB+1.
!> 
[out]W
!>          W is REAL array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 
[out]Z
!>          Z is COMPLEX array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
!>          eigenvectors, with the i-th column of Z holding the
!>          eigenvector associated with W(i). The eigenvectors are
!>          normalized so that Z**H*B*Z = I.
!>          If JOBZ = 'N', then Z is not referenced.
!> 
[in]LDZ
!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= N.
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
!>          On exit, if INFO=0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If N <= 1,               LWORK >= 1.
!>          If JOBZ = 'N' and N > 1, LWORK >= N.
!>          If JOBZ = 'V' and N > 1, LWORK >= 2*N**2.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal sizes of the WORK, RWORK and
!>          IWORK arrays, returns these values as the first entries of
!>          the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (MAX(1,LRWORK))
!>          On exit, if INFO=0, RWORK(1) returns the optimal LRWORK.
!> 
[in]LRWORK
!>          LRWORK is INTEGER
!>          The dimension of array RWORK.
!>          If N <= 1,               LRWORK >= 1.
!>          If JOBZ = 'N' and N > 1, LRWORK >= N.
!>          If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
!>
!>          If LRWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK, RWORK
!>          and IWORK arrays, returns these values as the first entries
!>          of the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
!>          On exit, if INFO=0, IWORK(1) returns the optimal LIWORK.
!> 
[in]LIWORK
!>          LIWORK is INTEGER
!>          The dimension of array IWORK.
!>          If JOBZ = 'N' or N <= 1, LIWORK >= 1.
!>          If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
!>
!>          If LIWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK, RWORK
!>          and IWORK arrays, returns these values as the first entries
!>          of the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, and i is:
!>             <= N:  the algorithm failed to converge:
!>                    i off-diagonal elements of an intermediate
!>                    tridiagonal form did not converge to zero;
!>             > N:   if INFO = N + i, for 1 <= i <= N, then CPBSTF
!>                    returned INFO = i: B is not positive definite.
!>                    The factorization of B could not be completed and
!>                    no eigenvalues or eigenvectors were computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Definition at line 241 of file chbgvd.f.

245*
246* -- LAPACK driver routine --
247* -- LAPACK is a software package provided by Univ. of Tennessee, --
248* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
249*
250* .. Scalar Arguments ..
251 CHARACTER JOBZ, UPLO
252 INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LRWORK,
253 $ LWORK, N
254* ..
255* .. Array Arguments ..
256 INTEGER IWORK( * )
257 REAL RWORK( * ), W( * )
258 COMPLEX AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
259 $ Z( LDZ, * )
260* ..
261*
262* =====================================================================
263*
264* .. Parameters ..
265 COMPLEX CONE, CZERO
266 parameter( cone = ( 1.0e+0, 0.0e+0 ),
267 $ czero = ( 0.0e+0, 0.0e+0 ) )
268* ..
269* .. Local Scalars ..
270 LOGICAL LQUERY, UPPER, WANTZ
271 CHARACTER VECT
272 INTEGER IINFO, INDE, INDWK2, INDWRK, LIWMIN, LLRWK,
273 $ LLWK2, LRWMIN, LWMIN
274* ..
275* .. External Functions ..
276 LOGICAL LSAME
277 REAL SROUNDUP_LWORK
278 EXTERNAL lsame, sroundup_lwork
279* ..
280* .. External Subroutines ..
281 EXTERNAL ssterf, xerbla, cgemm, chbgst, chbtrd,
282 $ clacpy,
283 $ cpbstf, cstedc
284* ..
285* .. Executable Statements ..
286*
287* Test the input parameters.
288*
289 wantz = lsame( jobz, 'V' )
290 upper = lsame( uplo, 'U' )
291 lquery = ( lwork.EQ.-1 .OR. lrwork.EQ.-1 .OR. liwork.EQ.-1 )
292*
293 info = 0
294 IF( n.LE.1 ) THEN
295 lwmin = 1+n
296 lrwmin = 1+n
297 liwmin = 1
298 ELSE IF( wantz ) THEN
299 lwmin = 2*n**2
300 lrwmin = 1 + 5*n + 2*n**2
301 liwmin = 3 + 5*n
302 ELSE
303 lwmin = n
304 lrwmin = n
305 liwmin = 1
306 END IF
307 IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
308 info = -1
309 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
310 info = -2
311 ELSE IF( n.LT.0 ) THEN
312 info = -3
313 ELSE IF( ka.LT.0 ) THEN
314 info = -4
315 ELSE IF( kb.LT.0 .OR. kb.GT.ka ) THEN
316 info = -5
317 ELSE IF( ldab.LT.ka+1 ) THEN
318 info = -7
319 ELSE IF( ldbb.LT.kb+1 ) THEN
320 info = -9
321 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
322 info = -12
323 END IF
324*
325 IF( info.EQ.0 ) THEN
326 work( 1 ) = sroundup_lwork(lwmin)
327 rwork( 1 ) = real( lrwmin )
328 iwork( 1 ) = liwmin
329*
330 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
331 info = -14
332 ELSE IF( lrwork.LT.lrwmin .AND. .NOT.lquery ) THEN
333 info = -16
334 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
335 info = -18
336 END IF
337 END IF
338*
339 IF( info.NE.0 ) THEN
340 CALL xerbla( 'CHBGVD', -info )
341 RETURN
342 ELSE IF( lquery ) THEN
343 RETURN
344 END IF
345*
346* Quick return if possible
347*
348 IF( n.EQ.0 )
349 $ RETURN
350*
351* Form a split Cholesky factorization of B.
352*
353 CALL cpbstf( uplo, n, kb, bb, ldbb, info )
354 IF( info.NE.0 ) THEN
355 info = n + info
356 RETURN
357 END IF
358*
359* Transform problem to standard eigenvalue problem.
360*
361 inde = 1
362 indwrk = inde + n
363 indwk2 = 1 + n*n
364 llwk2 = lwork - indwk2 + 2
365 llrwk = lrwork - indwrk + 2
366 CALL chbgst( jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, z, ldz,
367 $ work, rwork, iinfo )
368*
369* Reduce Hermitian band matrix to tridiagonal form.
370*
371 IF( wantz ) THEN
372 vect = 'U'
373 ELSE
374 vect = 'N'
375 END IF
376 CALL chbtrd( vect, uplo, n, ka, ab, ldab, w, rwork( inde ), z,
377 $ ldz, work, iinfo )
378*
379* For eigenvalues only, call SSTERF. For eigenvectors, call CSTEDC.
380*
381 IF( .NOT.wantz ) THEN
382 CALL ssterf( n, w, rwork( inde ), info )
383 ELSE
384 CALL cstedc( 'I', n, w, rwork( inde ), work, n,
385 $ work( indwk2 ),
386 $ llwk2, rwork( indwrk ), llrwk, iwork, liwork,
387 $ info )
388 CALL cgemm( 'N', 'N', n, n, n, cone, z, ldz, work, n, czero,
389 $ work( indwk2 ), n )
390 CALL clacpy( 'A', n, n, work( indwk2 ), n, z, ldz )
391 END IF
392*
393 work( 1 ) = sroundup_lwork(lwmin)
394 rwork( 1 ) = real( lrwmin )
395 iwork( 1 ) = liwmin
396 RETURN
397*
398* End of CHBGVD
399*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
CGEMM
Definition cgemm.f:188
subroutine chbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, rwork, info)
CHBGST
Definition chbgst.f:164
subroutine chbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
CHBTRD
Definition chbtrd.f:161
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:101
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine cpbstf(uplo, n, kd, ab, ldab, info)
CPBSTF
Definition cpbstf.f:151
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine cstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
CSTEDC
Definition cstedc.f:204
subroutine ssterf(n, d, e, info)
SSTERF
Definition ssterf.f:84
Here is the call graph for this function:
Here is the caller graph for this function: