LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ slangb()

real function slangb ( character norm,
integer n,
integer kl,
integer ku,
real, dimension( ldab, * ) ab,
integer ldab,
real, dimension( * ) work )

SLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.

Download SLANGB + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SLANGB  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the element of  largest absolute value  of an
!> n by n band matrix  A,  with kl sub-diagonals and ku super-diagonals.
!> 
Returns
SLANGB
!>
!>    SLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> 
Parameters
[in]NORM
!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in SLANGB as described
!>          above.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.  When N = 0, SLANGB is
!>          set to zero.
!> 
[in]KL
!>          KL is INTEGER
!>          The number of sub-diagonals of the matrix A.  KL >= 0.
!> 
[in]KU
!>          KU is INTEGER
!>          The number of super-diagonals of the matrix A.  KU >= 0.
!> 
[in]AB
!>          AB is REAL array, dimension (LDAB,N)
!>          The band matrix A, stored in rows 1 to KL+KU+1.  The j-th
!>          column of A is stored in the j-th column of the array AB as
!>          follows:
!>          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
!> 
[in]LDAB
!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK)),
!>          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
!>          referenced.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 120 of file slangb.f.

122*
123* -- LAPACK auxiliary routine --
124* -- LAPACK is a software package provided by Univ. of Tennessee, --
125* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
126*
127* .. Scalar Arguments ..
128 CHARACTER NORM
129 INTEGER KL, KU, LDAB, N
130* ..
131* .. Array Arguments ..
132 REAL AB( LDAB, * ), WORK( * )
133* ..
134*
135* =====================================================================
136*
137*
138* .. Parameters ..
139 REAL ONE, ZERO
140 parameter( one = 1.0e+0, zero = 0.0e+0 )
141* ..
142* .. Local Scalars ..
143 INTEGER I, J, K, L
144 REAL SCALE, SUM, VALUE, TEMP
145* ..
146* .. External Subroutines ..
147 EXTERNAL slassq
148* ..
149* .. External Functions ..
150 LOGICAL LSAME, SISNAN
151 EXTERNAL lsame, sisnan
152* ..
153* .. Intrinsic Functions ..
154 INTRINSIC abs, max, min, sqrt
155* ..
156* .. Executable Statements ..
157*
158 IF( n.EQ.0 ) THEN
159 VALUE = zero
160 ELSE IF( lsame( norm, 'M' ) ) THEN
161*
162* Find max(abs(A(i,j))).
163*
164 VALUE = zero
165 DO 20 j = 1, n
166 DO 10 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
167 temp = abs( ab( i, j ) )
168 IF( VALUE.LT.temp .OR. sisnan( temp ) ) VALUE = temp
169 10 CONTINUE
170 20 CONTINUE
171 ELSE IF( ( lsame( norm, 'O' ) ) .OR. ( norm.EQ.'1' ) ) THEN
172*
173* Find norm1(A).
174*
175 VALUE = zero
176 DO 40 j = 1, n
177 sum = zero
178 DO 30 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
179 sum = sum + abs( ab( i, j ) )
180 30 CONTINUE
181 IF( VALUE.LT.sum .OR. sisnan( sum ) ) VALUE = sum
182 40 CONTINUE
183 ELSE IF( lsame( norm, 'I' ) ) THEN
184*
185* Find normI(A).
186*
187 DO 50 i = 1, n
188 work( i ) = zero
189 50 CONTINUE
190 DO 70 j = 1, n
191 k = ku + 1 - j
192 DO 60 i = max( 1, j-ku ), min( n, j+kl )
193 work( i ) = work( i ) + abs( ab( k+i, j ) )
194 60 CONTINUE
195 70 CONTINUE
196 VALUE = zero
197 DO 80 i = 1, n
198 temp = work( i )
199 IF( VALUE.LT.temp .OR. sisnan( temp ) ) VALUE = temp
200 80 CONTINUE
201 ELSE IF( ( lsame( norm, 'F' ) ) .OR.
202 $ ( lsame( norm, 'E' ) ) ) THEN
203*
204* Find normF(A).
205*
206 scale = zero
207 sum = one
208 DO 90 j = 1, n
209 l = max( 1, j-ku )
210 k = ku + 1 - j + l
211 CALL slassq( min( n, j+kl )-l+1, ab( k, j ), 1, scale,
212 $ sum )
213 90 CONTINUE
214 VALUE = scale*sqrt( sum )
215 END IF
216*
217 slangb = VALUE
218 RETURN
219*
220* End of SLANGB
221*
logical function sisnan(sin)
SISNAN tests input for NaN.
Definition sisnan.f:57
real function slangb(norm, n, kl, ku, ab, ldab, work)
SLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition slangb.f:122
subroutine slassq(n, x, incx, scale, sumsq)
SLASSQ updates a sum of squares represented in scaled form.
Definition slassq.f90:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: