LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
real function slangb | ( | character | norm, |
integer | n, | ||
integer | kl, | ||
integer | ku, | ||
real, dimension( ldab, * ) | ab, | ||
integer | ldab, | ||
real, dimension( * ) | work ) |
SLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.
Download SLANGB + dependencies [TGZ] [ZIP] [TXT]
!> !> SLANGB returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of an !> n by n band matrix A, with kl sub-diagonals and ku super-diagonals. !>
!> !> SLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
[in] | NORM | !> NORM is CHARACTER*1 !> Specifies the value to be returned in SLANGB as described !> above. !> |
[in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, SLANGB is !> set to zero. !> |
[in] | KL | !> KL is INTEGER !> The number of sub-diagonals of the matrix A. KL >= 0. !> |
[in] | KU | !> KU is INTEGER !> The number of super-diagonals of the matrix A. KU >= 0. !> |
[in] | AB | !> AB is REAL array, dimension (LDAB,N) !> The band matrix A, stored in rows 1 to KL+KU+1. The j-th !> column of A is stored in the j-th column of the array AB as !> follows: !> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). !> |
[in] | LDAB | !> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KL+KU+1. !> |
[out] | WORK | !> WORK is REAL array, dimension (MAX(1,LWORK)), !> where LWORK >= N when NORM = 'I'; otherwise, WORK is not !> referenced. !> |
Definition at line 120 of file slangb.f.