110 SUBROUTINE zptts2( IUPLO, N, NRHS, D, E, B, LDB )
117 INTEGER IUPLO, LDB, N, NRHS
120 DOUBLE PRECISION D( * )
121 COMPLEX*16 B( LDB, * ), E( * )
141 $
CALL zdscal( nrhs, 1.d0 / d( 1 ), b, ldb )
145 IF( iuplo.EQ.1 )
THEN
157 b( i, j ) = b( i, j ) - b( i-1, j )*dconjg( e( i-1 ) )
163 b( i, j ) = b( i, j ) / d( i )
165 DO 40 i = n - 1, 1, -1
166 b( i, j ) = b( i, j ) - b( i+1, j )*e( i )
178 b( i, j ) = b( i, j ) - b( i-1, j )*dconjg( e( i-1 ) )
183 b( n, j ) = b( n, j ) / d( n )
184 DO 60 i = n - 1, 1, -1
185 b( i, j ) = b( i, j ) / d( i ) - b( i+1, j )*e( i )
201 b( i, j ) = b( i, j ) - b( i-1, j )*e( i-1 )
207 b( i, j ) = b( i, j ) / d( i )
209 DO 110 i = n - 1, 1, -1
210 b( i, j ) = b( i, j ) - b( i+1, j )*dconjg( e( i ) )
222 b( i, j ) = b( i, j ) - b( i-1, j )*e( i-1 )
227 b( n, j ) = b( n, j ) / d( n )
228 DO 130 i = n - 1, 1, -1
229 b( i, j ) = b( i, j ) / d( i ) -
230 $ b( i+1, j )*dconjg( e( i ) )
subroutine zptts2(iuplo, n, nrhs, d, e, b, ldb)
ZPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf...