112 SUBROUTINE zptts2( IUPLO, N, NRHS, D, E, B, LDB )
119 INTEGER IUPLO, LDB, N, NRHS
122 DOUBLE PRECISION D( * )
123 COMPLEX*16 B( LDB, * ), E( * )
143 $
CALL zdscal( nrhs, 1.d0 / d( 1 ), b, ldb )
147 IF( iuplo.EQ.1 )
THEN
159 b( i, j ) = b( i, j ) - b( i-1, j )*dconjg( e( i-1 ) )
165 b( i, j ) = b( i, j ) / d( i )
167 DO 40 i = n - 1, 1, -1
168 b( i, j ) = b( i, j ) - b( i+1, j )*e( i )
180 b( i, j ) = b( i, j ) - b( i-1, j )*dconjg( e( i-1 ) )
185 b( n, j ) = b( n, j ) / d( n )
186 DO 60 i = n - 1, 1, -1
187 b( i, j ) = b( i, j ) / d( i ) - b( i+1, j )*e( i )
203 b( i, j ) = b( i, j ) - b( i-1, j )*e( i-1 )
209 b( i, j ) = b( i, j ) / d( i )
211 DO 110 i = n - 1, 1, -1
212 b( i, j ) = b( i, j ) - b( i+1, j )*dconjg( e( i ) )
224 b( i, j ) = b( i, j ) - b( i-1, j )*e( i-1 )
229 b( n, j ) = b( n, j ) / d( n )
230 DO 130 i = n - 1, 1, -1
231 b( i, j ) = b( i, j ) / d( i ) -
232 $ b( i+1, j )*dconjg( e( i ) )
subroutine zptts2(iuplo, n, nrhs, d, e, b, ldb)
ZPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf...
subroutine zdscal(n, da, zx, incx)
ZDSCAL