110      SUBROUTINE zptts2( IUPLO, N, NRHS, D, E, B, LDB )
 
  117      INTEGER            IUPLO, LDB, N, NRHS
 
  120      DOUBLE PRECISION   D( * )
 
  121      COMPLEX*16         B( LDB, * ), E( * )
 
  141     $      
CALL zdscal( nrhs, 1.d0 / d( 1 ), b, ldb )
 
  145      IF( iuplo.EQ.1 ) 
THEN 
  157               b( i, j ) = b( i, j ) - b( i-1, j )*dconjg( e( i-1 ) )
 
  163               b( i, j ) = b( i, j ) / d( i )
 
  165            DO 40 i = n - 1, 1, -1
 
  166               b( i, j ) = b( i, j ) - b( i+1, j )*e( i )
 
  178                  b( i, j ) = b( i, j ) - b( i-1, j )*dconjg( e( i-1 ) )
 
  183               b( n, j ) = b( n, j ) / d( n )
 
  184               DO 60 i = n - 1, 1, -1
 
  185                  b( i, j ) = b( i, j ) / d( i ) - b( i+1, j )*e( i )
 
  201               b( i, j ) = b( i, j ) - b( i-1, j )*e( i-1 )
 
  207               b( i, j ) = b( i, j ) / d( i )
 
  209            DO 110 i = n - 1, 1, -1
 
  210               b( i, j ) = b( i, j ) - b( i+1, j )*dconjg( e( i ) )
 
  222                  b( i, j ) = b( i, j ) - b( i-1, j )*e( i-1 )
 
  227               b( n, j ) = b( n, j ) / d( n )
 
  228               DO 130 i = n - 1, 1, -1
 
  229                  b( i, j ) = b( i, j ) / d( i ) -
 
  230     $                        b( i+1, j )*dconjg( e( i ) )
 
 
subroutine zptts2(iuplo, n, nrhs, d, e, b, ldb)
ZPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf...