LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dsyequb()

subroutine dsyequb ( character uplo,
integer n,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) s,
double precision scond,
double precision amax,
double precision, dimension( * ) work,
integer info )

DSYEQUB

Download DSYEQUB + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DSYEQUB computes row and column scalings intended to equilibrate a
!> symmetric matrix A (with respect to the Euclidean norm) and reduce
!> its condition number. The scale factors S are computed by the BIN
!> algorithm (see references) so that the scaled matrix B with elements
!> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
!> the smallest possible condition number over all possible diagonal
!> scalings.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A. N >= 0.
!> 
[in]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          The N-by-N symmetric matrix whose scaling factors are to be
!>          computed.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= max(1,N).
!> 
[out]S
!>          S is DOUBLE PRECISION array, dimension (N)
!>          If INFO = 0, S contains the scale factors for A.
!> 
[out]SCOND
!>          SCOND is DOUBLE PRECISION
!>          If INFO = 0, S contains the ratio of the smallest S(i) to
!>          the largest S(i). If SCOND >= 0.1 and AMAX is neither too
!>          large nor too small, it is not worth scaling by S.
!> 
[out]AMAX
!>          AMAX is DOUBLE PRECISION
!>          Largest absolute value of any matrix element. If AMAX is
!>          very close to overflow or very close to underflow, the
!>          matrix should be scaled.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (2*N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
References:
Livne, O.E. and Golub, G.H., "Scaling by Binormalization",
Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
DOI 10.1023/B:NUMA.0000016606.32820.69
Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679

Definition at line 128 of file dsyequb.f.

130*
131* -- LAPACK computational routine --
132* -- LAPACK is a software package provided by Univ. of Tennessee, --
133* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
134*
135* .. Scalar Arguments ..
136 INTEGER INFO, LDA, N
137 DOUBLE PRECISION AMAX, SCOND
138 CHARACTER UPLO
139* ..
140* .. Array Arguments ..
141 DOUBLE PRECISION A( LDA, * ), S( * ), WORK( * )
142* ..
143*
144* =====================================================================
145*
146* .. Parameters ..
147 DOUBLE PRECISION ONE, ZERO
148 parameter( one = 1.0d0, zero = 0.0d0 )
149 INTEGER MAX_ITER
150 parameter( max_iter = 100 )
151* ..
152* .. Local Scalars ..
153 INTEGER I, J, ITER
154 DOUBLE PRECISION AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE,
155 $ SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
156 LOGICAL UP
157* ..
158* .. External Functions ..
159 DOUBLE PRECISION DLAMCH
160 LOGICAL LSAME
161 EXTERNAL dlamch, lsame
162* ..
163* .. External Subroutines ..
164 EXTERNAL dlassq, xerbla
165* ..
166* .. Intrinsic Functions ..
167 INTRINSIC abs, int, log, max, min, sqrt
168* ..
169* .. Executable Statements ..
170*
171* Test the input parameters.
172*
173 info = 0
174 IF ( .NOT. ( lsame( uplo, 'U' ) .OR.
175 $ lsame( uplo, 'L' ) ) ) THEN
176 info = -1
177 ELSE IF ( n .LT. 0 ) THEN
178 info = -2
179 ELSE IF ( lda .LT. max( 1, n ) ) THEN
180 info = -4
181 END IF
182 IF ( info .NE. 0 ) THEN
183 CALL xerbla( 'DSYEQUB', -info )
184 RETURN
185 END IF
186
187 up = lsame( uplo, 'U' )
188 amax = zero
189*
190* Quick return if possible.
191*
192 IF ( n .EQ. 0 ) THEN
193 scond = one
194 RETURN
195 END IF
196
197 DO i = 1, n
198 s( i ) = zero
199 END DO
200
201 amax = zero
202 IF ( up ) THEN
203 DO j = 1, n
204 DO i = 1, j-1
205 s( i ) = max( s( i ), abs( a( i, j ) ) )
206 s( j ) = max( s( j ), abs( a( i, j ) ) )
207 amax = max( amax, abs( a( i, j ) ) )
208 END DO
209 s( j ) = max( s( j ), abs( a( j, j ) ) )
210 amax = max( amax, abs( a( j, j ) ) )
211 END DO
212 ELSE
213 DO j = 1, n
214 s( j ) = max( s( j ), abs( a( j, j ) ) )
215 amax = max( amax, abs( a( j, j ) ) )
216 DO i = j+1, n
217 s( i ) = max( s( i ), abs( a( i, j ) ) )
218 s( j ) = max( s( j ), abs( a( i, j ) ) )
219 amax = max( amax, abs( a( i, j ) ) )
220 END DO
221 END DO
222 END IF
223 DO j = 1, n
224 s( j ) = 1.0d0 / s( j )
225 END DO
226
227 tol = one / sqrt( 2.0d0 * n )
228
229 DO iter = 1, max_iter
230 scale = 0.0d0
231 sumsq = 0.0d0
232* beta = |A|s
233 DO i = 1, n
234 work( i ) = zero
235 END DO
236 IF ( up ) THEN
237 DO j = 1, n
238 DO i = 1, j-1
239 work( i ) = work( i ) + abs( a( i, j ) ) * s( j )
240 work( j ) = work( j ) + abs( a( i, j ) ) * s( i )
241 END DO
242 work( j ) = work( j ) + abs( a( j, j ) ) * s( j )
243 END DO
244 ELSE
245 DO j = 1, n
246 work( j ) = work( j ) + abs( a( j, j ) ) * s( j )
247 DO i = j+1, n
248 work( i ) = work( i ) + abs( a( i, j ) ) * s( j )
249 work( j ) = work( j ) + abs( a( i, j ) ) * s( i )
250 END DO
251 END DO
252 END IF
253
254* avg = s^T beta / n
255 avg = 0.0d0
256 DO i = 1, n
257 avg = avg + s( i )*work( i )
258 END DO
259 avg = avg / n
260
261 std = 0.0d0
262 DO i = n+1, 2*n
263 work( i ) = s( i-n ) * work( i-n ) - avg
264 END DO
265 CALL dlassq( n, work( n+1 ), 1, scale, sumsq )
266 std = scale * sqrt( sumsq / n )
267
268 IF ( std .LT. tol * avg ) GOTO 999
269
270 DO i = 1, n
271 t = abs( a( i, i ) )
272 si = s( i )
273 c2 = ( n-1 ) * t
274 c1 = ( n-2 ) * ( work( i ) - t*si )
275 c0 = -(t*si)*si + 2*work( i )*si - n*avg
276 d = c1*c1 - 4*c0*c2
277
278 IF ( d .LE. 0 ) THEN
279 info = -1
280 RETURN
281 END IF
282 si = -2*c0 / ( c1 + sqrt( d ) )
283
284 d = si - s( i )
285 u = zero
286 IF ( up ) THEN
287 DO j = 1, i
288 t = abs( a( j, i ) )
289 u = u + s( j )*t
290 work( j ) = work( j ) + d*t
291 END DO
292 DO j = i+1,n
293 t = abs( a( i, j ) )
294 u = u + s( j )*t
295 work( j ) = work( j ) + d*t
296 END DO
297 ELSE
298 DO j = 1, i
299 t = abs( a( i, j ) )
300 u = u + s( j )*t
301 work( j ) = work( j ) + d*t
302 END DO
303 DO j = i+1,n
304 t = abs( a( j, i ) )
305 u = u + s( j )*t
306 work( j ) = work( j ) + d*t
307 END DO
308 END IF
309
310 avg = avg + ( u + work( i ) ) * d / n
311 s( i ) = si
312 END DO
313 END DO
314
315 999 CONTINUE
316
317 smlnum = dlamch( 'SAFEMIN' )
318 bignum = one / smlnum
319 smin = bignum
320 smax = zero
321 t = one / sqrt( avg )
322 base = dlamch( 'B' )
323 u = one / log( base )
324 DO i = 1, n
325 s( i ) = base ** int( u * log( s( i ) * t ) )
326 smin = min( smin, s( i ) )
327 smax = max( smax, s( i ) )
328 END DO
329 scond = max( smin, smlnum ) / min( smax, bignum )
330*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
subroutine dlassq(n, x, incx, scale, sumsq)
DLASSQ updates a sum of squares represented in scaled form.
Definition dlassq.f90:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: