130
131
132
133
134
135
136 INTEGER INFO, LDA, N
137 DOUBLE PRECISION AMAX, SCOND
138 CHARACTER UPLO
139
140
141 DOUBLE PRECISION A( LDA, * ), S( * ), WORK( * )
142
143
144
145
146
147 DOUBLE PRECISION ONE, ZERO
148 parameter( one = 1.0d0, zero = 0.0d0 )
149 INTEGER MAX_ITER
150 parameter( max_iter = 100 )
151
152
153 INTEGER I, J, ITER
154 DOUBLE PRECISION AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE,
155 $ SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
156 LOGICAL UP
157
158
159 DOUBLE PRECISION DLAMCH
160 LOGICAL LSAME
162
163
165
166
167 INTRINSIC abs, int, log, max, min, sqrt
168
169
170
171
172
173 info = 0
174 IF ( .NOT. (
lsame( uplo,
'U' ) .OR.
175 $
lsame( uplo,
'L' ) ) )
THEN
176 info = -1
177 ELSE IF ( n .LT. 0 ) THEN
178 info = -2
179 ELSE IF ( lda .LT. max( 1, n ) ) THEN
180 info = -4
181 END IF
182 IF ( info .NE. 0 ) THEN
183 CALL xerbla(
'DSYEQUB', -info )
184 RETURN
185 END IF
186
187 up =
lsame( uplo,
'U' )
188 amax = zero
189
190
191
192 IF ( n .EQ. 0 ) THEN
193 scond = one
194 RETURN
195 END IF
196
197 DO i = 1, n
198 s( i ) = zero
199 END DO
200
201 amax = zero
202 IF ( up ) THEN
203 DO j = 1, n
204 DO i = 1, j-1
205 s( i ) = max( s( i ), abs( a( i, j ) ) )
206 s( j ) = max( s( j ), abs( a( i, j ) ) )
207 amax = max( amax, abs( a( i, j ) ) )
208 END DO
209 s( j ) = max( s( j ), abs( a( j, j ) ) )
210 amax = max( amax, abs( a( j, j ) ) )
211 END DO
212 ELSE
213 DO j = 1, n
214 s( j ) = max( s( j ), abs( a( j, j ) ) )
215 amax = max( amax, abs( a( j, j ) ) )
216 DO i = j+1, n
217 s( i ) = max( s( i ), abs( a( i, j ) ) )
218 s( j ) = max( s( j ), abs( a( i, j ) ) )
219 amax = max( amax, abs( a( i, j ) ) )
220 END DO
221 END DO
222 END IF
223 DO j = 1, n
224 s( j ) = 1.0d0 / s( j )
225 END DO
226
227 tol = one / sqrt( 2.0d0 * n )
228
229 DO iter = 1, max_iter
230 scale = 0.0d0
231 sumsq = 0.0d0
232
233 DO i = 1, n
234 work( i ) = zero
235 END DO
236 IF ( up ) THEN
237 DO j = 1, n
238 DO i = 1, j-1
239 work( i ) = work( i ) + abs( a( i, j ) ) * s( j )
240 work( j ) = work( j ) + abs( a( i, j ) ) * s( i )
241 END DO
242 work( j ) = work( j ) + abs( a( j, j ) ) * s( j )
243 END DO
244 ELSE
245 DO j = 1, n
246 work( j ) = work( j ) + abs( a( j, j ) ) * s( j )
247 DO i = j+1, n
248 work( i ) = work( i ) + abs( a( i, j ) ) * s( j )
249 work( j ) = work( j ) + abs( a( i, j ) ) * s( i )
250 END DO
251 END DO
252 END IF
253
254
255 avg = 0.0d0
256 DO i = 1, n
257 avg = avg + s( i )*work( i )
258 END DO
259 avg = avg / n
260
261 std = 0.0d0
262 DO i = n+1, 2*n
263 work( i ) = s( i-n ) * work( i-n ) - avg
264 END DO
265 CALL dlassq( n, work( n+1 ), 1, scale, sumsq )
266 std = scale * sqrt( sumsq / n )
267
268 IF ( std .LT. tol * avg ) GOTO 999
269
270 DO i = 1, n
271 t = abs( a( i, i ) )
272 si = s( i )
273 c2 = ( n-1 ) * t
274 c1 = ( n-2 ) * ( work( i ) - t*si )
275 c0 = -(t*si)*si + 2*work( i )*si - n*avg
276 d = c1*c1 - 4*c0*c2
277
278 IF ( d .LE. 0 ) THEN
279 info = -1
280 RETURN
281 END IF
282 si = -2*c0 / ( c1 + sqrt( d ) )
283
284 d = si - s( i )
285 u = zero
286 IF ( up ) THEN
287 DO j = 1, i
288 t = abs( a( j, i ) )
289 u = u + s( j )*t
290 work( j ) = work( j ) + d*t
291 END DO
292 DO j = i+1,n
293 t = abs( a( i, j ) )
294 u = u + s( j )*t
295 work( j ) = work( j ) + d*t
296 END DO
297 ELSE
298 DO j = 1, i
299 t = abs( a( i, j ) )
300 u = u + s( j )*t
301 work( j ) = work( j ) + d*t
302 END DO
303 DO j = i+1,n
304 t = abs( a( j, i ) )
305 u = u + s( j )*t
306 work( j ) = work( j ) + d*t
307 END DO
308 END IF
309
310 avg = avg + ( u + work( i ) ) * d / n
311 s( i ) = si
312 END DO
313 END DO
314
315 999 CONTINUE
316
317 smlnum =
dlamch(
'SAFEMIN' )
318 bignum = one / smlnum
319 smin = bignum
320 smax = zero
321 t = one / sqrt( avg )
323 u = one / log( base )
324 DO i = 1, n
325 s( i ) = base ** int( u * log( s( i ) * t ) )
326 smin = min( smin, s( i ) )
327 smax = max( smax, s( i ) )
328 END DO
329 scond = max( smin, smlnum ) / min( smax, bignum )
330
subroutine xerbla(srname, info)
double precision function dlamch(cmach)
DLAMCH
subroutine dlassq(n, x, incx, scale, sumsq)
DLASSQ updates a sum of squares represented in scaled form.
logical function lsame(ca, cb)
LSAME